ynalyze [t!

ser's Guide

Synalyze It!: User's Guide

Andreas Pehnack
Copyright © 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Andreas Pehnack

Synalysis makes no warranties as to the contents of this manual or accompanying software and specifically disclaims any warranties
of merchantability or fitness for any particular purpose. Synalysis further reserves the right to make changes to the specifications of
the program and contents of the manual without obligation to notify any person or organization of such changes.

Table of Contents

1. Welcome to Synalyze Tt!ooooiiiiiiiiiiiiiii e 1
2. What is Synalyze Tt ...ccoooiiiiiiiiieeiiice ettt 2
3. INStAllationeeeeiiiiiiiii e 3
4. Synalyze It! eXplainedoooiiiiiiiiiiiiiiiiiiiiiiieeee e 4
The Reference DOCUMENcccuiiiiiiiiiiiiiiiiiii i 4
The Grammar Editorcooooiiiiiiiiiiiiiiii 5
The HISEOZIAIN ..ueevviiiiiieeetiiiiiie et e ettt e ettt e e e e et ee e e e e e s naaerreeeeeees 14
Compare Text ENCOAINGScoooiiiiiiiiiiiiiiiiiii 14
FIN DHAlog oooeiiiiiiiiii 15
Checksums dialog T e 19
Data Panel Dialog o oo 20
ST T 0 o 0V N 22
6. How Do L. oo 28
7. SUPPOTE ceviiiiiiii s 32
8. Reverse ENgineeringcccoooiiiiiiiiiiiiiiiiiiiiiiii 33
9. EXPISSIONScoiiiiiiiiiiiiiiiii i 35
10. Scripting Referenceccoooviiiiiiiiiiiiiiii 42
GLOSSATY .. 70

iii

List of Figures

3.1. Installation of the apPliCAtiONccueeiiiiiiiiiiniiiiic e 3
4.1. Parts of the Reference DOCUMENccciiiiiiiiiiiiiiiiiiiiiic e 4
4.2. Parts of the Grammar EditOrccooiiiiiiiiiiiiiiii 6
4.3. Structure Propertieseeiiiiiiiiiiiiii e 7
4.4. Binary element propertiesccooiiiiiiiiiiiiiiiiii s 8
4.5. Custom element Propertiesceeeiiiiiiiiiiiiiiiiiiii 9
4.6. Grammar element Propertiescooooiiiiiiiiiiiiiiiiiii 10
4.7. Number element Propertiesooeeviviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee 11
4.8. Script element Propertiesccceeeiiiiiiiiiiiiii 12
4.9. String element Propertiesveeiiiiiiiiiiiiiiii 13
4.10. Parts of the Histogram dialogccoocurrieimiiiiiiiiiiiiieiiiiece e 14
4.11. Encoding comparison dialogccoooviiiiiiiiiiiiii 15
4.12. Text search dialogooouuiiiieiieiiiiiiiic e e 16
4.13. Number 8earch dialogccovruuiiiiiiiiiiiiiiiice et 17
4.14. Mask $earch dialogveeeeieeiimiiiiiiiiiieeeeiiiieece ettt e e 18
4.15. Strings dialogcooiiiiiiiiiiii 19
4.16. ChecKSUMS IAlOZ «.....vveeeriiiiteiiiiit et et 20
4.17. Data Panelouuiiiiiiiiiiiiiiiiiiiii 21
5.1. Script editor WINdOWoooiiiiiiiiiiiiiii 24
6.1. Example of inherited structures (PNG chunks)ccccceeriiiiieiniiiiiinniiieeeniiieee e 28
6.2. Screenshot of inherited Chunk structurecccooiiiiiiiiiii 29
6.3. Example of automatically matched Structurescccovviviiiiniiiieiniiieciiniiee e, 30
6.4. Screenshot of Chunks StrUCHUTEcccooiiiiiiiiiiiiiiiiic e 30
8.1. Create a grammar from the file to be analyzedcccccceevmmiiiiiiiiiineeee 33
8.2, A SAMPIE TECOTA ... 33
9.1, Length @XPIeSSIONuueeeiiiieiimiiiiiiiteteee ittt e e e e ettt e e e e sttt eeeeesneiraeeeeeees 35
9.2. Repeat coUNt @XPIeSSIONuuuiiiiiiiiiiiiiiiii 35
9.3. Data Panelcccccccoi 36
9.4. GO to Position With eXPressioncccccvriiiiiiiiiiiiiiii et 36
30. Litte/big endian eXamplecceiiiiiiiiiimiiiie it 70

iv

Chapter 1. Welcome to Synalyze It!

No man can reveal to you nothing but that which already lies half-asleep in the
dawning of your knowledge.
—XKhalil Gibran

Thank You

Thank you for taking the time to read this manual. Here you'll find not only how to use Synalyze
It! but also essential knowledge about the analysis of binary files.

The idea behind Synalyze It! is to support you in all the tasks that are related to analysis of binary
files. Likewise, this manual is intended to help you make the most out of the application.

In any case I'm interested in your feedback. Be it positive, if you miss something or any other
improvement.

There are many clickable references in this manual to Wikipedia or the glossary at the end of the
manual that explains the most important terms related to Synalyze It!

Features only available in Synalyze It! Pro are marked with

Subscribe to the Synalyze It! Newsletter

Learn about the latest news, get relevant hints and tips about how to make most of the applica-
tion. Subscribe today:

* Go to the Synalysis web site http:/ / www.synalysis.net/
¢ Enter your email address in the box on the left side

e Click Subscribe

http://en.wikipedia.org/wiki/Khalil_Gibran
mailto:feedback@synalysis.com
http://en.wikipedia.org/wiki/Main_Page
http://www.synalysis.net/

Chapter 2. What is Synalyze It!

That is strength, boy! That is power! What is steel compared to the hand that
wields it?
—Thulsa Doom

At first glance the application looks mainly like a regular hex editor, however a powerful one
that supports many text code pages, allows finding not only text but also numbers, masks or all
strings in a file or displays a histogram.

What really sets it apart from all the other hex editors is a the support of grammars. Grammars?
Yes, every binary file has a layout that enables certain applications to read and interpret them.
These layouts are called grammars in Synalyze It! because of the similarities to the structure of
human languages. Grammar files are stored as plain XML files and describe all the structures
and data fields that comprise certain formats.

If a grammar is applied to a binary file Synalyze It! highlights all elements of the file and makes
the analysis much easier. Even non-experts become able to decode the contents of files they have
a grammar for. Many grammars already exist at http:/ / www.synalysis.net/formats.xml and can
be downloaded for free.

With Synalyze It! you are able to
¢ Display and edit files of unlimited size

¢ Analyze unknown binary file formats

Apply the grammar you created to any similar file
e Compare a sequence of bytes in different text encodings

* See in a histogram how often different bytes occur in a file

Get a list all strings in a file
¢ Do much much more...

The scripting support in the Pro version allows to write custom Python routines that process the
parsing results, import, export or modify grammars, manipulate files or fill gaps of the generic
parser.

http://en.wikipedia.org/wiki/Thulsa_Doom

Chapter 3. Installation

I don't necessarily think that installation is the only way to go.
It's just a label for certain kinds of arrangements.

—Barbara Kruger

If you bought Synalyze It! via the Mac App Store, the installation is done for you automatically.
Users who downloaded the software from the web site simply drag Synalyze It! after uncom-
pressing to their application folder.

Figure 3.1. Installation of the application

If you work with the version from the Mac App Store the paths for grammars and scripts are a
bit different. Due to sandboxing the paths of the Mac App Store version are prefixed with

~/ Li brary/ Cont ai ners/ com synal yze-it. Synal yzel t Pro/ Dat a
If you install grammar files via the application they are stored in the path
~/ Li brary/ Cont ai ners/ com synal yze-it. Synal yzel t Pro/ Dat a/
Li brary/ Application Support/Synalyze It! Pro/ Gamars

by Synalyze It! Pro and

~/ Li brary/ Cont ai ners/ net. synal ysi s. Synal yzel t/ Dat a/

Li brary/ Application Support/Synal yzelt/ G anmars

by Synalyze It! Those grammars are suggested automatically for appropriate files you open.
Scripts are stored in

~/ Li brary/ Cont ai ners/ com synal yze-it. Synal yzel t Pro/ Dat a/
Li brary/ Application Support/Synalyze It! Pro/Scripts

and will be embedded in grammars if you reference them.

http://en.wikipedia.org/wiki/Barbara_Kruger

Chapter 4. Synalyze It! explained

The cause is hidden; the effect is visible to all.
—Ovid

In Synalyze It! you mainly work with two types of windows: the actual files you're analysing
or using as a reference to build a grammar and the grammar editor that lets you make up the
structures and elements of grammars. The Pro version features additionally a scripting editor.

The Reference Document

The first thing you see when opening an arbitrary file is a hex dump and a text representation
of the bytes. The editing functions work the same like in a text editor - you can overwrite, insert
and remove bytes, select and copy bytes or text to the clipboard and so on.

The hex editor window is the starting point when exploring the details of a file. Much of the ap-
pearance can be customized like colors, position and selection number formats. There are plenty
of text encodings that can be selected to decode not only ASCII-encoded text but also Unicode
or EBCDIC as still found on IBM systems like z/OS or in formats like IJPDS.

There is a primary and a secondary selection for hex bytes and text. Per default the primary
selection is displayed in darker blue than the secondary selection. The contents of the primary
selection are displayed in the table below the hex editor and are copied to the clipboard when
you press Cmd+C (copy) or Cmd+X (cut). Switch between the selections with the Tab key and
toggle insert/ overwrite mode with Cmd+K.

Figure 4.1. Parts of the Reference Document

-
Byte (hex) Go to position in file File name Select/create N . Select/create script
N ot . . . Parse file again after
representation Hex with '0x' prefix Text encoding Alt+click to grammar that processes the
N . . . N grammar change . v
of file Relative with +/- see location for file parsing results
-
Start result
Selected bytes . .
N N 806 ¥ jer. guv processing script
switch with Tab key e
Position [1s0_8859-1:1087 1] [cIF grammar aY o [<none> explicitely
Go To Position Encoding Grammar Parse. Results Seripe Brocess stL s
—— GIFEad.0.6 4. | | Position Element Value
Text representation 0x00 T GIF file (0] Results of parsing
with selected 3 0x00 ¥ Header [0] with selected
N 0x00 EyeCatcher Eye catcher: GIF
encoding 0x03 Version 87a gramumar
EL 0x06 ¥ LogicalScreenDescriptor (0]
an6a[3z 65 65 6N 65 32 65 65 08 65 X 65 -m 188
Position Find using selection... Custom > Y
Compare code pages... Grammar Reference -
hex/dec/oct) or
(he /dec/oct) Save selection... Number plorindex 0
line number Fill selection.. Offset p ltio 0
Enclose in Structure String B
B Hex 160 69 86 FE 40 6E Sa 06 « Connect to Results Structure
(3) Rl Decimal A 39 5F DB A8 74 Fa B 0D BT T Structure Reference >
Selection start, end, B D R e e
length and content ol Line DICAD 17 6430 9 £3 b 6F 20 3| 40 (5 .J5.0e0.5
(for clipboard) _\ Blay oo mrnsd 63 20 21 28 28 2C 1€ 37 20 44 37| .-.T.5-1((, 7 D7 v Connect to Hex View
128]45 1D 91 13 45 14 14 77 %6 13 1A €5 10 72 6F 68 E wuE..treuee rok Export S
Start End Length Content = Display Position d
 CEEEE——
0x53 0xAA 0x58 + Hex 00336598
Help for 2) [CIF file[0] o <unused> ge“;"al
hex editor window el —
/ All columns >
Position | Module | Number | &ooe
0x0A MAP 1 DEBUC Read value for element ‘PackedFields’ ‘0xES'
CEEEEE———
0XOT [y Hle pos Hex | Read value for element ‘BackgroundColorindex': 0'
Path of currently 0x0 e e Derimal | Read value for element PixelAspegRatio’s 0’
selected result oxol P 2Y e P " Step mapping 'LogicalScreenDes/riptor’ - maximum repeat count '1' reached
% | Empty | []Hide if successful [All Debug Messages] @
Empty log
message list

Which (parsing)

Hide message
drawer if parsing Log messages messages to display
was successful

Help for messages

http://en.wikipedia.org/wiki/Ovid
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/EBCDIC
http://en.wikipedia.org/wiki/Z/OS
http://www.kodakversamark.com/pdfmanuals/0113991-603.pdf

Synalyze It! explained

The contextual menu of the hex view allows you to search in the file, compare text in different
encodings or save the selected bytes to disk. The Pro version additionally allows to fill the selec-
tion with text or bytes.

Once you selected a grammar for the file in the toolbar, the window is split and on the right side
you see the the parsing results. The contextual window of the hex view offers now some more
options: you can add a new element or structure to the grammar and link the hex view to the
results view. This means that wherever you click in the hex view, the corresponding result will
be selected on the right-hand side.

The parsing results are not only displayed, you can edit the values and they will be translated
back to the file. For all editing in the file unlimited undo and redo are available.

The Pro version provides more means to work with the parsing results. You can save them as an
XML or text file and even process them with a custom script. Some sample scripts are available
on http:/ /synalysis.net/scripts.html.

The Grammar Editor

When starting to create a new grammar you will mostly do the first steps in a reference file that
serves as a model. There you can select the bytes that should be interpreted as a structure, number,
string or another element. This immediate feedback — per default the grammar is applied after
each change — lets you quickly set up a basic grammar.

However, a good grammar avoids redundancy and makes use of the powerful inheritance fea-
ture. The grammar editor lets you craft elegant grammars that represent file formats as abstract
as possible.

http://synalysis.net/scripts.html

Synalyze It! explained

Figure 4.2. Parts of the Grammar Editor

Delete current
structure

Delete current
element

File name
Alt+click to
see location

]

—

)

') gif.grammar

Contact author of
grammar

Add structure -’\ 8006
I U~ SO WA | T | N

L
Add Structure Delete Structure Delete Element Grammar Info Share Contact Author

Element Type

— v @ GIF file

(o] Name: | LogicalScreenDescriptor
v @ Header
Grammar structures N
[| EyeCatcher String Extends: | <none>
and elements T rsion String

v = LoglcalScreenDescriptor Consists of: | <none> e —s S|
&= width Number | I — o
= Helght Number Length. Bytes [| derived

(= PackedFields
(= BackgroundColorindex
(= PixelAspectRatio

Number Alignment: |0 v | [derived

Number B
s [derived

Number Element order: | Fixed

Repeat: | <none> 2]
min: 1 - de Properties of
—_— structure/element
max: |1 > de

Stroke Color: NI ¥ derived

Fill Color: M derived e
Element Defaults \f—\
Which elements are
Endianness: | Little (¥ derived derived from the
Signed: | No ¥ derived parent structure?
Encoding: | 150_8859-1:1987 (¥ derived
Debug (¥ derived

Position Module Number | Severity | Message

Add/remove
currently selected
structure/element -
y | Empty | []Hide if successful | No Debug Messages 3] @
Hide message
Empty log . & Which messages to
. drawer if parsing Log messages . Help for messages
message list display

was successful

You can easily rearrange structures and their elements by drag and drop, pressing the Alt key
duplicates them.

Structure Properties

Structures are the main building blocks of grammars. There are three different kinds of structures:

® Main structure - This is the structure where parsing starts. Its name is marked bold. This struc-
ture covers the whole file to be parsed.

e Top-level structures - These are the structures which are not enclosed by other structures. You
can add them with the Add Structure button in the toolbar.

* Nested structures - They build the hierarchy inside a structure.

Be aware that top-level structures behave a bit different than the structures they may contain:
Only top-level structures can inherit from other top-level structures. Inheritance means that all
elements and settings are derived from another structure. This is convenient if you have a num-
ber of similar structures.

Property settings of elements and structures can be derived both from enclosing and inherited
structures. Thus top-level structures can only inherit settings if their Extends property is set.

Synalyze It! explained

Figure 4.3. Structure properties

Name: Record

m Color Description

Extends: = <none> T
Consists of: = <none> T
Length: “ Bytes derived
Alignment: 0 M derived
Element order: | Fixed d derived
Repeat: = <none> T
min: 1 “ derived
max: |1 “ derived
Value: SomeElement derived
Element Defaults
Endianness: | Big [T derived
Signed: | No T derived
Encoding: | 1SO_8859-1:1987 [T} derived
V| Enabled Debug derived

e Extends - Select here the structure to inherit from. Only top-level structures can inherit from
other top-level structures

e Consists of - Select here a parent structure if the structure consists of multiple similar records.

e Length - The structure length in bytes. You can also select here the name of an integer number
element inside the structure or which was parsed before.

e Alignment - If a structure must start at a multiple of n bytes, use the alignment field.

e Element order - Choose a fixed element order if all elements in the structure have to appear in a
fixed order. If only a single element of many is expected, choose variable.

 Repeat - The name of an integer number element that specifies how often to repeat this struc-
ture. Make sure the max repeat count is at least the highest possible repeat count.

* min - The minimum repeat count. Parsing fails if that number is not reached.

¢ max - The maximum repeat count. Parsing stops if that number is reached. Select unlimited if
the structure should fill the remaining space (determined by the enclosing structure).

o Endianness - The default endianness of elements in this structure.

e Signed - The default "signedness" of elements in this structure.

Synalyze It! explained

* Encoding - The default encoding of strings in this structure.

e Value - The name of an element within the structure. The value of this element is displayed
for the structure in the parsing results. Normally you write the most significant element here.
This allows in many cases that you don't have to expand the structure in the parsing tree.

e Stroke Color - The color of the path drawn around this structure in the hex view.

e Fill Color - The background color of this structure in the hex view.

* Description - Description of the structure. This is displayed in a tooltip in the results tree view.
Binary Element Properties
Binary elements are used for bit or byte sequenced that shouldn't be analyzed in more detail.

Figure 4.4. Binary element properties

Name: |binary_element

Color = Description |

- derived
max: |1 v derived
Length: [Remaining v || Bytes 3| derived
Fixed Values: derived
' Name Walue
+| =[] Must match
(¥ Enabled

® Repeat min - The minimum repeat count. Parsing fails if that number is not reached.

® Repeat max - The maximum repeat count. Parsing stops if that number is reached. Select un-
limited if the element should fill the remaining space (determined by the enclosing structure).

e Length - The element length in bits or bytes. You can also write here an expression that may
contain element names of elements parsed before.

Synalyze It! explained

* Fixed Values - If Must Match is set one of these values must occur in the file to be parsed. Write
the values as hex bytes.

® Must match - If this flag is set the enclosing structure is only parsed successfully if one of the
fixed values is found.

Custom Element Properties

The script used to parse or translate back to the file is chosen when the custom element is created.
The script is copied to the grammar so it doesn't depend on the scripts stored on your disk.

Figure 4.5. Custom element properties

Name: |custom_element

Color = Description |

v derived

max: |1 v de

Script: DOSDateTime Read Only

Length: 4 | Bytes & [|derived

(¥ Enabled

* Repeat min - The minimum repeat count. Parsing fails if that number is not reached.

® Repeat max - The maximum repeat count. Parsing stops if that number is reached. Select un-
limited if the element should fill the remaining space (determined by the enclosing structure).

Grammar Element Properties

The grammar element parses parts of a file using an external grammar file. This makes sense for
file formats like Exif that can occur inside other file formats.

http://en.wikipedia.org/wiki/Exif

Synalyze It! explained

Figure 4.6. Grammar element properties

Name: |grammar_element

Color = Description |

v derived

max: |1 - derived

File Name: | Select... |
UTl:
Extension:

™ Enabled

* Repeat min - The minimum repeat count. Parsing fails if that number is not reached.

® Repeat max - The maximum repeat count. Parsing stops if that number is reached. Select un-
limited if the element should fill the remaining space (determined by the enclosing structure).

e File Name - Name of the grammar file to be used. If an absolute path is specified it is always

used. If only the grammar file name is given the grammar is searched first in the directory of
the referencing grammar, next in the directory where installed grammars are stored.

Number Element Properties

Number elements are used for any kind of numbers - float or integer.

10

Synalyze It! explained

Figure 4.7. Number element properties

Name: NumberElement

(Al Color Description
Repeat: min: |1 M derived
max: 1 “ derived
Type: Integer T derived
Length: 1 b4 Bytes derived
Endianness: Big 2 derived
Signed: No & derived
Display: Decimal [T derived
Min Value: derived
Max Value: derived
Value: NumberElement * 2 derived
Fixed Values: derived Masks:
Name Value Name Value
+ Must match +
Enabled

Repeat min - The minimum repeat count. Parsing fails if that number is not reached.

Repeat max - The maximum repeat count. Parsing stops if that number is reached. Select un-
limited if the element should fill the remaining space (determined by the enclosing structure).

Type - Number type (Integer/Float).

Length - The element length in bits or bytes (up to 64 bits). You can also write here an expression
that may contain element names of elements parsed before.

Endianness - Byte order of number in file. Read more about this in the glossary

Signed - Should the bytes in the file be interpreted as signed or unsigned number? Signed
numbers are read as two's complement.

Display - Select here how to display the number in the results tree view besides the hex editor.

Min Value - The lowest value this number can have. If Must match is set parsing of the enclosing
structure fails if this constraint is violated.

Max Value - The highest value this number can have. If Must match is set parsing of the enclosing
structure fails if this constraint is violated.

Value - An expression that is evaluated after parsing the number in the file. The result of the
expression is displayed instead of the parsed value.

11

http://en.wikipedia.org/wiki/Two%27s_complement

Synalyze It! explained

e Fixed Values - If Must Match is set one of these values must occur in the file to be parsed. The
values are interpreted depending on the number display format.

® Masks - If you want to show in the results view that certain bits or bit combinations do match
you cann add masks and and different values for each of them.

® Must match - If this flag is set the enclosing structure is only parsed successfully if one of the
fixed values is found and the number is within Min Value and Max Value.

Script Element Properties
The script element allows to inject little scripts that are executed while a file is parsed. A typical
usage of it is to set the endianness to be used depending on certain bytes in a file (e. g. in the

TIFF file format). Scripts can be written in Lua or Python, whatever you like more.

Figure 4.8. Script element properties

Name: |script_element

Color = Description |

v derived

max: |1 v de

Language: | Lua =

— some Lua script

(™ Enabled

* Repeat min - The minimum repeat count. Parsing fails if that number is not reached.

® Repeat max - The maximum repeat count. Parsing stops if that number is reached. Select un-
limited if the element should fill the remaining space (determined by the enclosing structure).

String Element Properties

The string element is used for different kinds of strings.

12

Synalyze It! explained

Figure 4.9. String element properties

Name: |string_element

Color | Description |

Repeat: min: |1 v derived
max: |1 - derived
Type: | Fixed length 3 derived
Length: |Remaining | derived
Encoding: | ISO_8859-1:1987 ¢ ™ derived
Delimiter: derived
Fixed Values: de
| Name WValue
+| =[] Must match
™ Enabled

* Repeat min - The minimum repeat count. Parsing fails if that number is not reached.

® Repeat max - The maximum repeat count. Parsing stops if that number is reached. Select un-
limited if the element should fill the remaining space (determined by the enclosing structure).

® Type - Strings can be interpreted as Fixed length, Zero terminated, Delimiter terminated or Pascal.
Fixed-length strings are expected to consist of exactly as many bytes as specified in Length.
Zero-terminated strings are a special case of delimiter-terminated strings. They are expected
to end with a character of value zero (also strings of multi-byte characters). For pascal strings
the first character is interpreted as the actual string length. You can also specify a length that
the pascal string consumes in any case, independently of the actual string length.

e Length - Length of the string in bytes. Here an expression can be used that contains names of
elements parse previously.

e Encoding - The encoding of the string in the file.

* Delimiter - Delimiter of a delimiter-terminated string. Specify here the byte sequence that ends
a string in hex.

e Fixed Values - If Must Match is set one of these values must occur in the file to be parsed. The
values are translated automatically depending on the encoding.

13

Synalyze It! explained

The Histogram

When beginning to analyze a binary file, especially if you don't know which format it has, a
histogram can be quite useful. Histograms in Synalyze It! show you at a glance the frequency of
all bytes and provide an impression of the characteristics of a file. In many file formats you'll see
that certain bytes are more frequent than others; usually those bytes are an essential part of the
basic format structure like record separators. An equally-leveled histogram is mostly evidence
of compressed or encrypted files.

Figure 4.10. Parts of the Histogram dialog

The file being
analyzed

MAURER.AFP

4.70%

Histogram showing

. Percentage at
frequencies .
| mouse position
0% 1

of bytes

0xC6: 3.173%

| Hex Decimal Octal Char Count v | Percent

0xD3 211 0323 o} 1570 4.704% m

0xFO 240 0360 [} 1305 3.910%

0xCé 198 0306 £ 1059 3.173%

0xD2 210 0322 o] 1023 3.065%

0xC7 199 0307 o 897 2.688%

0xC4 196 0304 A 878 2.631%

OxF1 241 0361 A 875 2.622%

OxF4 244 0364 <] 853 2.556%

0xC2 194 0302 A 852 2.553%

0xC3 195 0303 A 852 2.553%

0xC5 197 0305 A 852 2.553%

0xC1 193 0301 A 843 2.526%

0xF6 246 0366 o 843 2.526%

OxF7 247 0367 + 843 2.526% &5

0xN4 212 0324 o] R42 2.523% b
@

R A S N W W

Hex Decimal Octal Character
. A . . Count how often Percentage of
representation representation representation representation byte occurs in file byte count
of byte of byte of byte of byte 4 Y

Compare Text Encodings

In cases where you are not sure how text is encoded in a certain file the code page comparison
dialog can be an indispensable help. It displays a sequence of bytes translated to text via dozens
of encodings. Additionally a confidence value is computed that tells you the probability that
an encoding matches. The table shows both a translation of the text at the top to bytes and a
translation of the bytes at the top to text with all available encodings. For more information about
text or character encodings, see Text encodings in the glossary.

14

Synalyze It! explained

Figure 4.11. Encoding comparison dialog

The file being
analyzed

D ——

Text to be

analyzed 800 . russian-utf8.txt

\» Text: N DR B, D+D¥% N BN D, D+D¥ N D;0°N D, D£D% N DN D, p+b¥% | (7)

FrosE - +
Text encoding used /—> Encoding: | 1SO_8859-1:1987 ol
for hex Hex: D181 DOBFDOBOD1 81 DOBSDOBIDOBEOADI 81 DOBFDOBOD1 81 DOBB DI
representatlon Code page Confidence | Text Representation Hex Representation
UlF-1b u ERLEURY W= FFFEDLIUU 2000 DU WU BE U

UTF-16,version=1 0 QUL WL FFFED100 20 00 DO 00 BF 0

Hex UTF-16,version=2 0 EEHELEEY t2 =l FEFF00 D100 2000 DO 00 B
representation UTF-16BE 0 E?ﬂ%ﬂéy &!: m.%tl--‘ 00 D1 00 20 00 DO 00 BF 00
UTF-16BE,version=1 0 BWURIIT WESEREE - FEFF00 D100 20 00 DO 00 B

of text UTF-16LE 0 Lk E S5 WESAL D100 20 00 DO 00 BF 00 DO
UTF-16LEversion=1 0 FERLHR S el EISWES2L - FFFED100 20 00 DO 00 BF O

UTF-32 0 V00009 HH6H6HO... FFFE0000D1 000000200
UTF-32BE 0 V00009000000, 000000D100000020000

UTF-32LE 0 ©0000066666... D100000020000000D0

UTF-7 0 V0000000000 2BA14E45202B414E414

UTF-8 100 cnacubo cnacubo cnacu... C39120C390C2BFC3 90

SR EEGIRES 00 D1 00 20 00 DO 00 BF 00
ML EEsEEAE370 D100 20 00 DO 00 BF 00 DO
VOOOH9HHH0H4... 000000D100000020000
V000909000690, D100000020000000DO
NDz0°N D D+DI NDz... 1A201A1A1ABO1A201A
windows-1251 CPPIP*CIPEP+Ps CFPIP°... 1A201A 1A 1A B0 1A20 1A
windows-1252 N B;0°N D, D+b¥ N ;... D120 D0 BF DO BO D1 20 DO

UTF16_OppositeEndian 0
0
0
0
0
0
0

windows-1253 0 POQMNP MEN+NYPM... 1A201A1A1AB0O1A20 1A
0
0
0
0
0
0
0

UTF16_PlatformEndian
UTF32_OppositeEndian
UTF32_PlatformEndian
windows-1250

windows-1254 N GE°RN &G E+G3 N G, D120 1ABF 1ABOD1 20 LAB
windows-1255 &) Wixn 1 %ig M+ % 1A20 1ABF 1AB0O 1A 20 1AB
windows-1256 L3, detdsk i, 4%k, 1A20 1A 1A 1ABO 1A20 1A
windows-1257 N 828°N 323+5% N 3=3... 1A20 1A 1A 1ABO 1A 20 1A
windows-1258 ND:0°N b D=xb¥% N ;... D120 1ABF1ABOD120 LAB
windows-874-2000 sz seenew”sviz§ seen... 3F 20 3F 3F 3F 3F 3F 20 3F 3F
windows-949-2000 OIEEOMMR GEES... 3F20A8A2 A2 AFABA2 AL

4 4 A A
Code p'age/ Probability in % Text representation Hex representation
encoding of bytes (hex) of text

Find Dialog

Synalyze It! lets you search not only for text but also numbers, masks and display all strings in a
file. You can open the find dialog in the contextual menu of selected text or by pressing Cmd+E
(find selected text). Cmd+F opens the search dialog with the text from the find pasteboard which
may be filled by the search dialog in another application. The search results are updated while
you type. Double click a result in the find dialog to jump to the file position of the search result.
You may use the find dialog not only to search but also to convert text or numbers to bytes or
to get a binary representation of a few bytes.

15

Synalyze It! explained

Text Search

Unlike most other hex editors Synalyze It! lets you select one of many text encodings to have
full control over the bytes that are actually searched. You can edit either the text or the hex rep-
resentation of the searched bytes.

Figure 4.12. Text search dialog

The file being
analyzed
{ R
Text to be 800 short.afp
searched [Text | Number Mask Strings |
— P Value: INDEX|
f] Encoding: | IBM500 B
Text encoding used ——"" PegEncino: =
for hex Hex €9 D5 C4 CSE7
representation
v,
{ ' .
Hex Position
representation 0x01CB82 60 INDEX CO
¢ 0x01CBDD 060 INDEX AC
of text 0x01CC38 00 INDEX SE

0x01CC93 00 INDEX TI
0x01CCEE 00 INDEX (D
0x01CD49 00 INDEX PS

Results: 6 @
| ¥

N

text was found
Found text and

some bytes around

Position where]

Number of results Help button

Number Search

The number search feature makes it easy to search for an integer number in a file. Not only you
can define the number length but also if it is represented in little or big endian format.

16

Synalyze It! explained

Figure 4.13. Number search dialog

The file being
analyzed
{ 3
Number to be 8.0.0 shortafo
searched [Text | Mumber | Mask Strings |
\——» Value: 211‘
() Format: | 8 Bit 44 [Unsigned 4 | Big Endian
Number format |—"]]
used for hex Hex: D3
representation /
v
e) ;
Hex Position
tati 0x000003 5A @0 98 D3 EE EE 00 00 00 0
representation 0x000008 @0 80 0@ C6 C9 D3 (5 (8 C5 C1 4
of number 0x0000A0 0 00 5A B0 41 D3 EE EE 00 00 60
0x0000E6 0 00 5A 82 10 D3 AS C6 00 00 00
0x0000F1 €3D7D9 €5 E2 D3 C9 C2 0 30 8@
0x0000FB 0 0@ 5A B0 2B D3 EE EE 00 00 80
0x000128 0 00 5A 80 28 D3 EE EE 00 00 00
0x00013C 60 E2 E3 C1C2 D3 C5 40 40 40 40
0x000158 0 00 5A B0 28 D3 EE EE 00 00 00
1
0x000185 @0 00 5A 80 1C D3 A8 CE 00 00 00

LY. T Y B T A A 1
Results: 1532 T @
4 N\

Position where]

text was found

Number of results Found numbers and Help button
some bytes around

Mask Search

If you want to find a sequence of bytes with certain bits set, the mask search was developed for
you.

17

Synalyze It! explained

Figure 4.14. Mask search dialog

The file being
analyzed
{ '
Mask to be 8.00 short.afp
searched "Text Number | Mask | Strings |
__y Hex: D3FA
- 1/——> Binary: 1101001111111111
Binary
representation
of mask
| Position
0x002451 @1 20 0 0@ @@ D3 FF E9 82 BB FFE9 m
0x0024C1 120 00 0@ 60 D7 FF E9 61 68 9108
0x0068AB 63 18 0@ 0@ 60 D3 FF E9 62 88 FF E9
0x009739 F@ @@ @@ F@ @@ FF FF FF FF FF FF F@
0x00973A 8@ B0 FO 0@ FF FF FF FF FF FF F@ 00
0x009738 88 F@ 00 FF FF FF FF FF FF FB 06 FO
0x00973C F@ 88 FF FF FF FF FF FF FO 00 F@ 00
0x00973D 8@ FF FF FF FF FF FF FO 80 FO 00 FO
0x009798 @F B@ FC 3F 8@ FF FF 8@ FF FF 8@ F7
0x009798 3F 8@ FF FF 80 FF FF 88 F7 E7 88 F@ :
Results: 615 T @
4 | 4

Position where

mask was found

Number of results

Found bytes and
some around

Strings

There's a Unix tool that offers the same functionality on the command line however in Synalyze

It! you can even select in which text encoding the strings should be found.

18

http://en.wikipedia.org/wiki/Strings_(Unix)

Synalyze It! explained

Figure 4.15. Strings dialog

The file being
analyzed

)
Minimum 800 simple.doc
string Iength ! Text Number Mask Strings }
_‘\
Length: 5 ~| & .. and longer <&
/Encuding: ['1S0_8859-1:1987) Find longer
)
Text encoding strings
of strings

_
| Position
UXUUZ35A [Content_Types|.xmlPK -
0x00237D ! ¥05cA 6
0x002398 / _rels/.relsPK =
0x0023D4 theme/theme/themeManager. xmlPK -
0x00241E 0 theme/theme/themel.xmlPK -
0x002462 theme/theme/_rels/
0x00249F <?xml version="1.8" encoding="UTF-8"
0x0024D8 "> <aiclrMap xmlns:a="htitp:// m
0x0028B9 n=0Fo=0/
0x002C28 « +'201 H

0x002D00 Normal.dotm 1

Results: 194 k @

A

| %

Position where

mask was found
Found strings and

Number of results
some chars around

Help button

Checksums dialog

Binary files often contain check sums to detect or even correct unwanted modifications. Synalyze
It! Pro lets you compute them on the currently selected bytes. All supported hash algorithms are
immediately recomputed if you change the selection.

Supported checksums/hash values:
e Adler-32 - Used for example in zlib
* CR(C32 - Cyclic Redundancy Check

e MD4 - MD4 Message-Digest Algorithm

MD5 - MD5 Message-Digest Algorithm

RIPEMD-160 - RACE Integrity Primitives Evaluation Message Digest

SHA - Secure Hash Algorithm

SHA-1 - Secure Hash Algorithm 1

19

http://en.wikipedia.org/wiki/Checksum
http://en.wikipedia.org/wiki/Adler-32
http://en.wikipedia.org/wiki/Zlib
http://en.wikipedia.org/wiki/CRC32
http://en.wikipedia.org/wiki/MD4
http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/RIPEMD-160
http://en.wikipedia.org/wiki/SHA-0#SHA-0
http://en.wikipedia.org/wiki/SHA-1

Synalyze It! explained

SHA-224 - Secure Hash Algorithm 2 with 224 bits

SHA-256 - Secure Hash Algorithm 2 with 256 bits

SHA-384 - Secure Hash Algorithm 2 with 384 bits

SHA-512 - Secure Hash Algorithm 2 with 512 bits

Sum[16 Bit] - Sum of all bytes in an unsigned 16-bit integer

Tiger - Tiger hash value with length 192 bits. Optimized for 64-bit platforms

Whirlpool - Whirlpool cryptographic hash function

XOR - All selected bytes XOR'ed

Figure 4.16. Checksums dialog

Joro (96 00 68] 02 605K SA[00 00 61 60 60 60 27 04 60 04 15 03 60 60 60 80 10 60 63 50
¥FC
318 |FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2
334|FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2
FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2

EEEREAREN
BARRE RN
RERARRERN

M zjstream_sample.prn

ace Value

DC Adler32 66F23334

1178 |00 ec[oa eo) 587A8C24
n14 B4675116DB5015686A2E3DBBEF7 17FE6 L
9230]19 @8]0 @0 ¢ 3696A88E4BB567CID26DBF732FODES30
j24c|5A SAlo2 @8 @ pipEMD-160 599D8706E7BE54976F07143B0EDD41701909E401
1268 | BOTRCIAIEAN 1A 40E7D7BA14BAOD47AA0091661CBBBAEDFA68CBE7 vy
JZBE|E9 26 AD 73 € gpipy 2FBFOOE42B854FSE7607BCD2EGFBE4CCEFO1658A ik
:x 2‘; ’;2 Eﬁ ‘:: : SHA224 00BE3FBFA7EF09FCOE600D66CFODCFAC] SBOED463AFDELD4. .. l:g
avslre 18 80 = 4 SHA256 3BB248371074E83B63680483A1049153346F 5348BABA37SB...
wrelie g 15 o 4 SHA384 D8314A04796AAA36DSA7AA4DA0BEEBRI7CFO34CI27CDR2 .. | o
1910022 A= cr o g SHAS12 DOBABC4F616146CSCFSEBCF2753ACOSEIOACE3EFSDF22CA... | ¢
12c|43 3¢ 28 g7 4 SumI16 Bit] 3333 p.0
yaaler £ 28 aF 3 Tiger F8DFD81A4728E552E80F3 LFOF6BECDFO0526BEETEB2DA6BE ;.
136el82 45 65 £1 4 Whirlpool 8C50499E45B9A06FABI7AB23BES CO82BFO0304C49DES367... 5
1380|792 6@ 71 92 1 XOR FD 2.
339C |15 4A 82 18 1 AT
. ——r 102 selected bytes [%
1304(CC D6 5B A5 e bb.'

Data Panel Dialog

Mostly you'll work in binary files with a hexadecimal representation of the contents. However
humans are more familiar with decimal numbers. Synalyze It! Pro displays selected bytes in
common variable sizes (8, 16, 32 and 64 bit), signed and unsigned. Additionally RGB and CMYK
colors are shown for the selected bytes as well as a binary translation. The bytes can be interpreted
alternatively in little or big endian.

20

http://en.wikipedia.org/wiki/SHA224
http://en.wikipedia.org/wiki/SHA256
http://en.wikipedia.org/wiki/SHA384
http://en.wikipedia.org/wiki/SHA512
http://en.wikipedia.org/wiki/Tiger_(cryptography)
http://en.wikipedia.org/wiki/Whirlpool_(cryptography)
http://en.wikipedia.org/wiki/XOR
http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/Decimal
http://en.wikipedia.org/wiki/RGB
http://en.wikipedia.org/wiki/CMYK

Synalyze

It! explained

Figure 4.17. Data Panel

0x8B

0x8E 0x04 FC000000

®006 |] AdobeRGB1998.icc — Locked
| Position | [1s0_8859-1:1987 o [Icc profiles ol c
Go To. PﬂSiljnﬂ. Encoding 7 i VGrammxr’ it Parse i
exeee|02 ee oz 30 .. .BADBE....mntrR Position Element Value
1147 &2 20f B X2 D... .3 0x54 Profile ID 00 00 0 00 U0 00 00 OC
_jacsphPPL. . . .non 0x64 Reserved 00 00 00 00 00 00 00 0C
0x80 Tag Count 10
0x84 ¥ Tag Table [0]
0x84 ¥ Copyright Tag Table Element [0]
0x84 Tag Signature cprt: 63 70 72 74
0x88 Tag Offset OxFC
0x8C Tag Size 50
OxFC ¥ Copyright Tag [0]
OxFC ¥ textType [0]
OxFC AdobeRGB1998.icc
0x100 Type Value
Ox104 8 bit Unsigned Integer 252 dobe §)
OxEC 8 bit Signed Integer -4
43 BF 78 79 72 69 67 BB 74 t....Copyright 2@ 0x90 16 bit Unsigned Integer 64512
20 41 64 BF 62 65 22 Adobe Systems 0x90 16 bit Signed Integer 1024 '
@x121|49 GE €3 EF 72 7 6F 72 61 74 65 64 @9 [62 65| Incorporated...de x4 32 bit Unsigned Integer 4227858432
8:132) 0x08 32 bit Signed Integer 67108864
|27 22 20 28 31 39 39 38 23 00 .
imsz e : 0x130 64 bit Unsigned Integer 18158513608403280243
mz-@ﬂmww pog s o e e 0x130 64 bit Signed Integer -288230375306271373
e — 0x130 32 bit Float -26584559915698317458076141205606 }
B . o o0 o0 B0LB0ERIBE 00 00 00 oo BATRIERIEY oo ox134 64 bit Float -19490631681687366050486434863101
2x198 20 02 00 20[58 53 5A 20|20 63 30 03] 0x138 24 bit RGB
0x13C 32 bit CMYK
0x14D Binary 11111100 00000000 00000000 0000000
0x151 (g £ N ——
[63 75 72 7600 20 00 o8] o¢] 0%155 g Enclan =] JUse only selected cata
0x156
0x158 Localizable Macintosh description count 0
Length, Costent; 0x159 Localizable Macintosh description

(7) [ICCFilel0] > Tag Table[0] » Copyright Tag Table Element[0] > Tag Size

o]

21

Chapter 5. Scripting 2]

I can't remember what my first script was.
—Tom Stoppard

Even without scripting Synalyze It! is quite a useful tool that allows to analyze files of many
file formats. However, there are rare cases that are better handled by custom scripts so the user
interface doesn't have to become more complex. Additionally, the scripting features of Synalyze
It! Pro let you automize various tasks.

You can write scripts

* in script elements, for example to control the endianness of a file

¢ in the script editor for custom data types or for automation purposes

There are different types of scripts:

e Generic - can be started from the menu in any context. Use this for helper functions or the like

® Grammar - works on grammars. Useful for importing into, exporting from or modifying gram-
mars

File - works on files. Can be used to modify opened files

Selection - processes only the selected bytes in the hex editor
® Data type - scripts to be used by custom elements
e Process Results - processes parsing results. Handy for exporting to an own format

Scripts can be available globally or in the context of a grammar. The scripting editor shows a
separate list of global scripts and for each opened grammar.

For all scripts in Synalyze It! Pro you can choose Lua or Python depending on your language
preferences. See The Script Page for useful sample scripts. Of course, if you develop a script that
may help another user, it would be great if you share it!

The scripting reference has detailed information about all available classes and methods.

Using the function debugLog(" Message") you can debug your scripts. Make sure you enable
debug messages in the log view.

The Script Element

These variables are preset in a script running in a script element:
e current Mapper Structure mapper (parser) of type St r uct ur eMapper

e current Struct ur e Structure currently being processed of type St r uct ur e

current El ement Element currently being processed (the element with the script) of type
El enent

current O f set Current file offset (bytes)

22

http://en.wikipedia.org/wiki/Tom_Stoppard
http://en.wikipedia.org/wiki/Lua_(programming_language)
http://en.wikipedia.org/wiki/Python_(programming_language)
http://synalysis.net/scripts.html

Scripting

e current O f set Bi t s Current file offset (bits)
e remai ni ngSi ze Remaining size in current structure (bytes)
e renai ni ngSi zeBi t s Remaining size in current structure (bits)

Sometimes the standard grammar structures and elements are not enough to parse a file format.
For example, in a ZIP file it is best to start at the end but Synalyze It! usually starts at the first
byte. A script element can continue the parsing at another file offset.

-- Lua script that continues parsing at end of file

-- get byte view of analyzed file
byt eVi ew = current Mapper: get Current Byt eVi ew)

-- get file length
fileLength = byteVi ew. get Lengt h()

-- query granmar applied to file
current Grammar = current Mapper: get Current G anmar ()

-- get the structure we want to apply
structure = current Ganmar: get Struct ur eByNane
("ZI'P end of central directory record")

-- parse at file offset filelLength-22 the structure queried above
byt esProcessed = current Mapper: napStruct ureAt Position
(structure, filelLength-22, 22)

Another common application of script elements is to select dynamically if the number elements
should be parsed in little or big endian mode.

-- Lua script that sets endi anness dependi ng on val ue of previous el enent

-- get collection with results so far
results = current Mapper: get Current Resul t s()

-- get latest added result
| ast Result = results:getlLastResult()

-- access the parsed val ue
val ue = | ast Resul t: get Val ue()

-- get the val ue parsed
signature = value:getString()

if (signature == "JZJZ") then
cur rent Mapper : set Dynam cEndi anness(synal ysi s. ENDI AN_BI G
el se
cur rent Mapper : set Dynam cEndi anness(synal ysis. ENDI AN_LI TTLE)

23

O

Scripting

end

In order to make this work the endianness of the number elements in the grammar has to be
set to dynamic.

The Script Editor

All scripts apart from the ones in scripting elements are edited in the script editor.

Figure 5.1. Script editor window

Show script

X Available script
properties

classes and
methods

)

Add new script
Synalyze It! Script Editor

‘Add Script Script Info
(9 Scripts # custon data type script Classes +
| etRootNode
. e ¥ Global def parceByteRange(elenent, byteVisy, bitPos, bitLength, results): g 0 .
Global scripts ¥ Grammar # this nethod parses oot Starting at bitPos, bitlength bits are remaining getStructureByName(String name)
Export To C “parsegytekangs nethod""" getStructureBylndex(int index)
VFile # create and set new value getStructureCount()
Import iHex value = Valus() setName(String name)
v Data Type value.setStrina("value of custom element") getName()
DOSsDateTime # how many bytes vere procsssed? GrammarManager
HexStringLength procsssecBytes - B ¥ LogSre
freration = 8 logMessage(string module, int
v Sample Crammar results .addE lenent(e lenent , processedBytes, iteration, value) logMessageForced(String module, int
¥ Generic logMessageHighlight(String module,
. . # Teturn nunber of processed bytes b NumberElement
Scripts stored Another Script return processedBytes
R ¥ Grammar » NumberValue
in grammar Sample Script def F111ByteRange(valus, bytekrray, bitPos, bitLength): » Result
this nethod transiates sdited values back to the file -
"t illByteRange method"""
logMessageForced
write an integer back to file
bytedrray.writelnsignedintBits(highWord, bitPos, bitLength, ENDIAN_BIG) ‘Param .

String module

int messagelD

LOG_SEVERITY severity

Method details

Script source

The Custom Element

The script that implements the logic of a custom element is edited in the script editor. In the
custom element you only select which script should be used so the code doesn't have to be copied.
(You also don't like redundancy, right?)

There are two tasks every structure element has to perform, be it a number, string or custom
element:

1. Parse data from a file and create a representation that can be displayed on screen
2. Translate an edited value back to file

The preset variable cur r ent Mapper of type St r uct ur eMapper can be used to get the current-
ly parsed structure, a LogSrc object for loggin or other useful properties of the parser.

The following two script functions should be implemented accordingly (Python syntax):

24

Scripting

def parseByteRange(el enent, byteView, bitPos, bitLength, results):
""" par seByt eRange net hod

def fillByteRange(val ue, byteArray, bitPos, bitLength):
"""fill Byt eRange nethod"""

Please check out http:/ /synalysis.net/scripts.html to find illustrated samples.

Generic Scripts

There may be scripts you want to run comfortably via the Script menu that are not related to
grammars or other files. Generic scripts don'timplement a certain script function, the whole code
is executed once you run them.

Grammar Scripts

While you can create grammars in the grammar editor and add elements via the hex editor there
are cases where scripts make your life much easier.

Grammar scripts are intended for mainly three tasks:

e Create or extend a grammar from an external source, for example an XML or .h header file
* Modify a grammar

e Export a grammar to some other representation

In Synalyze It! Pro there's already an export to .dot GraphViz files built-in however with scripts
only your programming skills are the limit ;-)

Grammar scripts can contain three method but only the pr ocessGr ammar (gr anmar) method
is required (Python syntax).
def init():

print "init"

def processG anmar (granmar):
print "granmmar"

def terminate():
print "term nate"

File Scripts

Laziness is one of the main incitements that motivates people to automize work with their com-
puters. Since you're a computer expert you probably don't want to perform tedious tasks when
editing a file — be it binary or text.

File scripts allow you to create or manipulate files in any possible way. The pr ocessByt eAr -
ray(byt eArray) method must be implemented, i ni t () andt ernmi nate() are optional.

25

http://synalysis.net/scripts.html
http://www.graphviz.org

Scripting

def init():
print "init"

def processByteArray(byteArray):
print "byteArray"

def term nate():
print "term nate"

On http:/ /synalysis.net/scripts.html you see how a file script can be implemented.

Selection Scripts

Often it's useful to process a script only on the bytes selected in the hex editor. Selection scripts
are only available if there is a selection.

The pr ocessByt eRange(byt eVi ew, byteArray, bytePos, bytelLength) method is
mandatory.

def processByteRange(byteView, byteArray, bytePos, bytelLength):
print "process byte range here..."

On http:/ /synalysis.net/scripts.html you see how a selection script can be implemented.

Result Processing Scripts

Now if you created your grammar and can see the beautiful tree that shows all the structures
and elements of your files, what comes next?

In Synalyze It! Pro you can export the whole tree as an XML or text file but your own script could
do so much more!

An obvious application is an export to C structures as shown on http:/ /synalysis.net/script-
s.html however I'm sure there are many other use cases.

There are three methods you can implement. i ni t () is called first, then pr ocessResul t (r e-
sul t) for every single result, finally t er mi nat e() can be used to clean up.

def init():
print "hello init"

def processResult(result):
print "hello result"”

type = result.getType()
if type == RESULT_STRUCTURE_START_TYPE:

print("Structure Start")
el se:

26

http://synalysis.net/scripts.html
http://synalysis.net/scripts.html
http://synalysis.net/scripts.html
http://synalysis.net/scripts.html

O

Scripting

print("other")

| evel = result.getLevel ()
print (level)

def term nate():
print "hello term nate"

27

Chapter 6. How Do I...

I feel very adventurous.
There are so many doors to be opened, and I'm not afraid to look behind them.

— Elizabeth Taylor

Even if you have some experience in binary file formats it may not be obvious how to translate
this to grammars in Synalyze It!

This chapter will cover common cases and questions asked by users. Feel free to contact me in
case you miss something here.

Structure Inheritance

In many file formats like PNG there are structures that comprise equal as well as differing ele-
ments (see also inheritance in the glossary). In Synalyze It! grammars you first create the parent
structure with all similar elements. This structure and its child structures must be separate from
the main structure that encloses the whole file.

Figure 6.1. Example of inherited structures (PNG chunks)

Chunk
b=

Length (integer)

~
L

must match = YES Type (string)
N

~
<

Data (structure)
inherits/ >] inherits/
extends CRC (integer) extends
PLTE Chunk gAMA Chunk
I N s D
Length Length
v N v
s S P S
Type = "PLTE" Type = "gAMA"
v N v
s N s N
Data Data
[gAMA elements]
N /
Y N
CRC
—

28

http://en.wikipedia.org/wiki/Elizabeth_Taylor
mailto:andreas@synalysis.net
http://en.wikipedia.org/wiki/Portable_Network_Graphics

How Do ...

Figure 6.2. Screenshot of inherited Chunk structure

Element Type
@ Defaults (o] Name: |IHDR
» & Header Defaults
¥ @ Chunk Defaults Extends: | Chunk 3
= Length Number
= Type Number Consists of: | <none> 3
& Data
= CRC Binary Length: T Bytes ™ derived
Alignment: 0 v M derived
= Length Number
= Type Number Element order: ixed = @]derived
» & Data Data Repeat: | <none> Al
= CRC Binary
¥ @ tUME Chunk min: 1 s @]derived
= Length Number . . "
& Type Number max: 1 @]derwed
» & Data Data Stroke Color: N ™ derived
= CRC Binary
O X Chunk Fill Color: b @]derived
& ZTXt Chunk
=11 Chunk Elenent Defaults
» & iccP Chunk
» & RNS Chunk Endianness: | Big : [derived
» @ gAMA Chunk Signed: | No : ™ derived
b @ cHRM Chunk
» & PLTE Chunk Encoding: | 150_8859-1:1987 - @derived
k& hIiST Chunk
» @ bKGD Chunk
» & pHYs Chunk
r & sPLT Chunk
Debug @] derived

+| = ?)

Step by Step

1. Create the parent structure by clicking Add Structure in the toolbar. Give the structure a mean-
ingful name.

2. Create all elements that are common among all child structures. Set all properties like must
match, colors, or endianness.

3. Create the child structures by clicking Add Structure in the toolbar. Give the structures mean-
ingful names, add the elements that are special for each of them and set the correct properties.

Match the right Structure

In the section above you learned how to design structures with minimal effort. The next ques-
tion is how to select the right structure automatically. The chunk structures in figure Figure 6.1,
“Example of inherited structures (PNG chunks)” are already prepared for automatic selection
by the Synalyze It! parser. The type element of the PLTE and gAMA chunk structures contains
one so-called fixed value that must be present in the file at a certain file position. The must-match
flag is derived from the parent structure.

29

How Do ...

Figure 6.3. Example of automatically matched structures

gAMA Chunk
Chunks [element order = variable] —_—
gAMA Chunk Length J
Reference [min repeat count = 0] Type = "gAMA"
PLTE Chunk —p»PLTE Chunk
Reference min repeat count=0] (T ata
o f[minrep h] Length
P gAMA elements
Type = "PLTE" o
CRC
Data e ———
... Chunk
Reference
—
CRC
N

The automatic structure mapping can be compared to switch/case constructs in programming
languages. There must be a criteria that determines which structure to apply. This criteria lies in
the elements of the structures themselves, the must-match flag lets structures only be mapped if
any of the specified fixed values is found in the file.

Figure 6.4. Screenshot of Chunks structure

| Element o Type
¥ @ Chunk Defaults |i| Name: | Chunks
= Length Number
= Type Number Extends: <none>
@ Data Consists of: | Chunk +
= CRC Binary
> & IHDR Chunk Length: | Bytes derived
> & tUME Chunk -
» & EXt Chunk Alignment: |0 ~ | [|derived
> TX _
UZ t Chunk Element order: | Variable +| [lderived
L =R1p Chunk
» @ iccP Chunk Repeat: | <none> =
F & (RNS Chunk \
b & gAMA Chunk min: |1 ~ derived
> @ cHRM Chunk max: |unlimited M| derived
> @ PLTE Chunk
» © hisT Chunk Stroke Color: N ™ derived
» @ bKGD Chunk Fill Color:] ™ derived
» & pHYs Chunk
F & sPLT Chunk 5 .
» @ SRGB Chunk ST oA
> @ IDAT
. : BT E:::: Endianness: | Big = E]derived
» @ IEND Chunk Signed: | No 5 M derived
¥ & PNG File Defaults
= Header Structure Reference Encoding: | 150_8853-1:1987 * | ¥ derived
= |HDR Structure Reference
= tIME Structure Reference
= iCCP Structure Reference
+— ‘ ., \ Debug ™ derived

Step by Step

1. Create a structure that will select one of multiple structures. Set the element order to variable to
use the switch/ case logic instead of sequential processing. In the screenshot this is the Chunks
structure. Set Repeat max to unlimited if multiple structures should be parsed

30

How Do ...

2. Create all the structures you want to select from by clicking Add Structure in the toolbar. Set
the must match check box for all elements which have fixed values or min/max values that
decide if a structure should match at a certain position in the file.

3. Create structure references in the structure you created first. The Repeat min field is automat-
ically set to zero for these references which indicates they are optional.

Often you'll use inherited structures for selection of one-of-many structures because mostly the
criteria that decides which structure should be applied is in the same structure element like Type
in the PNG example.

In case you want to parse files which contain structures you didn't define in the grammar you
can add a reference to the parent structure to the "select structure” because it doesn't have the
constraints of the child structures and matches always.

31

Chapter 7. Support

I'm so lucky. I have such a great support system. All T have to do is run.
—Cathy Freeman
If you still face problems after reading this manual, there are different ways to ask for help.
Fogbugz allows to enter issues directly into the Synalyze It! issue tracking system.
Emails can be sent to <suppor t @ynal ysi s. con® or via the web form on synalysis.net.

I'm open for any feature requests or any other suggestions, please send a note to
<i deas@ynal ysi s. con® to help improve the application.

Thanks for using Synalyze It! We look forward to hearing from you :-)

Tip

For further information about Synalyze It! visit http:/ / www.synalysis.net

32

http://en.wikipedia.org/wiki/Cathy_Freeman
https://synalysis.fogbugz.com/default.asp?pg=pgPublicEdit
mailto:support@synalysis.com
http://www.synalysis.net/contact-me.html
mailto:ideas@synalysis.com
http://www.synalysis.net

Chapter 8. Reverse Engineering

The hidden harmony is better than the obvious.
—Pablo Picasso

The term reverse engineering connotes usually something forbidden that only hackers do. How-
ever there are situations where reverse engineering is totally legal, fun and useful.

Let's assume there is a file you're interested in and you don't know much about its format. The
first step you can do is to look at the histogram and check if there are bytes that are more frequent
than others. Often those bytes play a special role in the file format. Zero bytes for example are
often used to end strings or to fill the unused space of elements.

Figure 8.1. Create a grammar from the file to be analyzed

w jer.gif

¥ <none>

& Fopropsopeoyeoro-wo-coooo CE

G CE 95 958 CB 65 95 95 93 95 9¢

=

To start creating an own grammar for your file format you simply click "Create grammar..." in
the grammar selection toolbar item. By this a new grammar document is created that contains
already information about file extension and / or type of the file to be analyzed.

If you are in the fortunate position that you have some control over the generation of the file,
you can try to save the file with little changes. For example, if the file is a saved score of some
game, produce files with as little difference as possible. In many cases this will lead you to the
relevant bytes and fields. Often it's easy to map the data you know from the generating program
to the bytes in the file. With this approach you try to work from the inside out. First you identify
single data elements, then the structures around them.

The alternative way is to find repeating patterns in the file that correspond with the record struc-
ture of the file. Sometimes it helps to scroll quickly though the file and let the eye detect sections
of different content in the file. The next step is to search for bytes that could hold the lengths or
file offsets of those sections.

Figure 8.2. A sample record

16 Bit 16 Bit
Length Record Type

To let Synalyze It! parse the file it's necessary to learn incrementally how the file is constructed.
Sometimes you'll find some hints in newsgroups, however even without prior knowledge there
are chances to analyze formerly completely unknown file formats. You should be aware of com-
mon ways how binary file formats are built. In many cases you'll see a hierarchical structure that
consists of elements called records or chunks. Those records often contain a field that holds the

33

http://en.wikipedia.org/wiki/Pablo_Picasso

Reverse Engineering

length of the record and an identifier that tells the reading program which type of record is to
be read.

When you search for certain lengths or file offsets in the file you definitely have to understand
that the bytes can occur in reverse order. See also the explanation of endianness in the glossary.

34

Chapter 9. Expressions

There are different places where you can use expressions instead of single numbers. The expres-
sion parsing uses primarily the ExprEval library (license).

One of the few modifications to the original expression parsing library is that expressions don't

need to be ended with a semicolon in Synalyze It!. Additionally hex numbers are accepted if
they are prefixed with Ox.

Lengths of structure elements

Structure, string and binary element lengths in the grammar can be computed by an expression.
The lengths of structures allow to contain the name of number variables that are inside the struc-
ture so the expression is computed when all needed variables are read.

Figure 9.1. Length expression

Length: pow(NumberOfCLUTGridPoints, | 7]

Alignment: 0 E]
lement order: | Fixed 5]
Repeat Counts

The repeat counts of structures and structure elements can comprise expressions including vari-
ables parsed before the structure or element.

Figure 9.2. Repeat count expression

Repeat: | <none>

L
e

min: |1

&) (&

max: . 5+16*channels

Data Panel

Normally you use the data panel to quickly see decimal values for the bytes in a file. However,
not only can you enter new values but even expressions that are resolved to the correct byte

representation in the file.

35

http://expreval.sourceforge.net/
http://expreval.svn.sourceforge.net/viewvc/expreval/tags/3_1/docs/license.txt?revision=17

Expressions

Figure 9.3. Data Panel

24 12 @@ @8 @2 @2 02 @1 B2 @2 @@ @3 FE FD FC FB FA FO F8 F7 FF FE F
FE FD[14] FB FA F9 F8 F7 FF FE FD FC FB FA F9 F8 F7 FF FE FD FC FB F
FB FA F9 F8 F7 FF FE FD FC FB FA F9 F8 F7 FF FE FD FC FB FA F9 F8 F

[EiNeNs _ ClutTestFile

Type Value

44|

8 bit Signed Integer 20

|16 bit Unsigned Integer 5371

16 bit Signed Integer 5371

|32 bit Unsigned Integer 352058105

32 bit Signed Integer 352058105
|54 bit Unsigned Integer 1512078051443736574
64 bit Signed Integer 1512078051443736574
32 bit Float 0.000000

64 bit Float 0.000000
|24 bit RGB 14FBFA
|32 bit VK

| Big Endian =] [] Use only selected data

Jump to File Offset

The jump to file offset entry field in the toolbar is handy when you frequently jump to new file

S KC

offsets. You can enter there simple hex or decimal numbers as well as expressions.

Figure 9.4. Go to position with expression

eanon

15*3-12|
GCo To Position
2x0000 23 2L 10 20 23 20 272 @

@x@R1E FF FE FD[FC]FB FA F9 F
@x@@3C FC FB FA F9 FB F7 FF F

Expression Syntax

Expressions have pretty much the same syntax as they would have on paper, with the following
exception:

* The asterisk "™ must be used to multiply. Examples:
* 5%6 Valid
o (x+1)*(x-1) Valid
o (x+1)(x-1) Invalid

Some functions may take reference parameters. These parameters are references to other vari-
ables. You can mix reference parameters with normal parameters. The order of the normal para-

36

Expressions

meters must remain the same and the order of the reference parameters must remain the same.
Examples:

e min(1,2,3,4,&mval); &moal is a reference to a variable mval

e min(1,2,&mval,3,4); You may mix them inside like this.

e min(1,2,(&mval),3,4); You may not nest reference parameters in any way
Expressions may also be nested with parenthesis. Examples:

o sin(x-cos(5+max(4,5,6*x)));

® 6+(5-2*(x+y));

If a variable is used in an expression, but that variable does not exist, it is considered zero. If it
does exist then its value is used instead.

Notice: An expression can NOT assign to a constant and an expression can NOT use a constant
as a reference parameter.

Order of operators

The order of operators are processed correctly in ExprEval. The parameters to functions may be
evaluated out of order, depending on the function itself.

The following illustrates the order of operators:

Operator Direction Example
Functions and Parenthesis N/A (x +5) *sin(d)
Negation Right to Left y=-2
Exponents Left to Right y=x"2
Multiplication and Division |Left to Right x*5/y
Addition and Subtraction Left to Right 4+5-3
Assignment Right to Left x=y=z=0

Internal Functions

The following functions are provided with ExprEval:

Function Min. Max. Min. Max. Result/Comment
Args Args Ref Args |Ref Args

abs(v) 1 1 0 0 Absolute value of v. abs(-4.3) re-
turns 4.3

mod(v,d) 2 2 0 0 Remainder of v/d. mod(5.2,2.5)
return 0.2

ipart(v) 1 1 0 0 The integer part of v. ipart(3.2)
returns 3

fpart(v) 1 1 0 0 The fractional part of v.
fpart(3.2) returns 0.2

min(y,...) 1 None 0 0 The minimum number passed.
min(3,2,-5,-2,7) returns -5

37

Expressions

Function Min. Max. Min. Max. Result/Comment
Args Args Ref Args |Ref Args

max(v,...) 1 None 0 0 The maximum number passed.
max(3,2,-5,-2,7) returns 7

pow(a,b) 2 2 0 0 The value a raised to the power
b. pow(3.2,1.7) returns 3217

sqrt(a) 1 1 0 0 The square root of a. sqrt(16) re-
turns 4

sin(a) 1 1 0 0 The sine of a radians. sin(1.5) re-
turns around 0.997

sinh(a) 1 1 0 0 The hyperbolic sine of a.
sinh(1.5) returns around 2.129

asin(a) 1 1 0 0 The arc-sine of a in radians.
asin(0.5) returns around 0.524

cos(a) 1 1 0 0 The cosine of a radians. cos(1.5)
returns around 0.0707

cosh(a) 1 1 0 0 The hyperbolic cosine of a.
cosh(1.5) returns around 2.352

acos(a) 1 1 0 0 The arc-cosine of a in radians.
acos(0.5) returns around 1.047

tan(a) 1 1 0 0 The tangent of a radians.
tan(1.5) returns around 14.101

tanh(a) 1 1 0 0 The hyperbolic tangent of a.
tanh(1.5) returns around 0.905

atan(a) 1 1 0 0 The arc-tangent of a in radians.
atan(0.3) returns about 0.291

atan2(y,x) 2 2 0 0 The arc-tangent of y/x, with
quadrant correction. atan2(4,3)
returns about 0.927

log(a) 1 1 0 0 The base 10 logarithm of a.
log(100) returns 2

pow10(a) 1 1 0 0 10 raised to the power of a.
pow10(2) returns 100

In(a) 1 1 0 0 The base e logarithm of a. In(2.8)
returns around 1.030

exp(a) 1 1 0 0 e raised to the power of a. exp(2)
returns around 7.389

logn(a,b) 2 2 0 0 The base b logarithm of a.
logn(16,2) returns 4

ceil(a) 1 1 0 0 Rounds a up to the nearest inte-
ger. ceil(3.2) returns 4

floor(a) 1 1 0 0 Rounds a down to the nearest
integer. floor(3.2) returns 3

rand(&seed) 0 0 1 1 Returns a number between 0 up
to but not including 1.

38

Expressions

Function

Min.
Args

Max.
Args

Min.
Ref Args

Max.
Ref Args

Result/Comment

random(a,b,&seed)

1

Returns a number between a up
to and including b.

randomize(&seed)

Seed the random number gen-
erator with a value based on the
current time. Return value is un-
known

deg(a)

Returns a radians converted
to degrees. deg(3.14) returns
around 179.909

rad(a)

Returns a degrees converted to
radians. rad(180) returns around
3.142

recttopolr(x,y)

Returns the polar radius of the
rectangular co-ordinates. rect-
topolr(2,3) returns around 3.606

recttopola(x,y)

Returns the polar angle (0...2PI)
in radians of the rectangular co-
ordinates. recttopola(2,3) returns
around 0.588

poltorectx(r,a)

Returns the x rectangular co-or-
dinate of the polar co-ordinates.
poltorectx(3,1.5) returns around
0.212

poltorecty(r,a)

Returns the y rectangular co-or-
dinate of the polar co-ordinates.
poltorecty(3,1.5) returns around
2.992

if(c,t,f)

Evaluates and returns t if ¢ is not
0.0. Else evaluates and returns f.
if(0.1,2.1,3.9) returns 2.1

select(c,n,z[,p])

Returns n if ¢ is less than 0.0. Re-
turns z if ¢ is 0.0. If c is greater
than 0.0 and only three argu-
ments were passed, returns z. If
c is greater than 0.0 and four ar-
guments were passed, return p.
select(3,1,4,5) returns 5

equal(a,b)

Returns 1.0 if a is equal to b. Else
returns 0.0 equal(3,2) returns 0.0

above(a,b)

Returns 1.0 if a is above b. Else
returns 0.0 above(3,2) returns 1.0

below(a,b)

Returns 1.0 if a is below b. Else
returns 0.0 below(3,2) returns 0.0

avg(a,...)

None

Returns the average of the val-
ues passed. avg(3,3,6) returns 4

39

Expressions

Function

Min.
Args

Max.
Args

Min.
Ref Args

Max.
Ref Args

Result/Comment

clip(v,;min,max)

0

Clips v to the range from min

to max. If v is less than min, it
returns min. If v is greater than
max it returns max. Otherwise it
returns v. clip(3,1,2) returns 2

clamp(v,min,max)

Clamps v to the range from
min to max, looping if needed.
clamp(8.2,1.3,4.7) returns 1.4

pntchange(sidelold,
side2o0ld, sidelnew,
side2new, oldpnt)

This is used to translate points
from different scale. It works no
matter the orientation as long
as the sides are lined up cor-
rectly. pntchange(-1,1,0,480,-0.5)
returns 120 (x example)
pntchange(-1,1,480,0,-0.5) re-
turns 360 (y example)

poly(x,cl,...)

None

This function calculates the
polynomial. x is the value to use
in the polynomial. c¢1 and on are
the coefficients. poly(4,6,9,3,1,4)
returns 2168 same as 6*4* + 9*4°
+3*4% + 1*4! + 4740

and(a,b)

Returns 0.0 if either a or b are
0.0 Else returns 1.0 and(2.1,0.0)
returns 0.0

or(a,b)

Returns 0.0 if both a and b are
0.0 Else returns 1.0 or(2.1,0.0) re-
turns 1.0

not(a)

Returns 1.0 if a is 0.0 Else re-
turns 0.0 not(0.3) returns 0.0

for(init,test,inc,al,...)

None

This function acts like a for loop
in C. First init is evaluated. Then
test is evaluated. As long as the
test is not 0.0, the action state-
ments (al to an) are evaluated,
the inc statement is evaluated,
and the test is evaluated again.
The result is the result of the fi-
nal action statement. for(x=0,be-
low(x,11),x=x+1,y=y+x) returns
55.0 (if y was initially 0.0)

many(expr,...)

None

This function treats many
subexpressions as a sin-

gle object (function). It is

mainly for the 'for' function.
for(many(j=5,k=1),above(j*k,0.00]
+5,k=k/2),0)

40

) many (j=j

Expressions

Internal Constants

The following constants are provided with ExprEval:

Constant Math Form Value

M_E e 2.7182818284590452354
M_LOG2E logy(e) 1.4426950408889634074
M_LOGI0E logio(e) 0.43429448190325182765
M_LN2 In(2) 0.69314718055994530942
M_LN10 In(10) 2.30258509299404568402
M_PI i 3.14159265358979323846
M_PI_2 /2 1.57079632679489661923
M_PI_4 /4 0.78539816339744830962
M_1_PI 1/m 0.31830988618379067154
M_2_PI 2/m 0.63661977236758134308
M_1_SQRTPI 1/V(m) 0.56418958354776
M_2_SQRTPI 2/V(m) 1.12837916709551257390
M_SQRT2 v(2) 1.41421356237309504880
M_1_SQRT?2 1/v(2) 0.70710678118654752440

41

Chapter 10. Scripting Reference

This chapter contains all classes and methods you can use in the scripting functions. If you feel
there's something missing, please contact me.

The following enumerations are used in various methods. In Lua, the "synalysis." prefix is need-
ed, please strip it when using the enumerations in Python.

Enumeration ENDIAN_TYPE

e synal ysi s. ENDI AN_UNDEFI NED Undefined endianness

e synal ysi s. ENDI AN_UNKNOMN Unknown endianness

e synal ysi s. ENDI AN_BI GBig endian (see glossary)

e synal ysi s. ENDI AN_LI TTLE Little endian (see glossary)

e synal ysi s. ENDI AN_DYNAM CDynamic endianness. Can be set via script while parsing file
Enumeration LENGTH_UNIT

e synal ysi s. LENGTH_UNSPECI FI ED Length unit is unspecified

e synal ysi s. LENGTH_BYTE Indicates byte length

e synal ysi s. LENGTH_BI T Indicates bit length
Enumeration ELEMENT _TYPE

e synal ysi s. ELEMENT_NONE Undefined element type

e synal ysi s. ELEMENT_BI NARY Binary element

e synal ysi s. ELEMENT_CUSTOMCustom element (uses scripted data type)

e synal ysi s. ELEMENT GRAMVAR REF Grammar reference element

e synal ysi s. ELEMENT NUMBER Number element

e synal ysi s. ELEMENT_STRI NG String element

e synal ysi s. ELEMENT_OFFSET File offset element

* synal ysi s. ELEMENT_SCRI PT Script element

e synal ysi s. ELEMENT _STRUCTURE Structure element

e synal ysi s. ELEMENT _STRUCTURE_REF Structure reference element
Enumeration LOG_SEVERITY

¢ synal ysi s. SEVERI TY_UNKNOMN Undefined log severity

e synal ysi s. SEVERI TY_FATAL Fatal log severity

e synal ysi s. SEVERI TY_ERRORError log severity

42

mailto:feedback@synalysis.com

Scripting Reference

e synal ysi s. SEVERI TY_WARNI NG Warning log severity

¢ synal ysi s. SEVERI TY_I NFOInfo log severity

synal ysi s. SEVERI TY_VERBOCSE Verbose log severity
e synal ysi s. SEVERI TY_DEBUGDebug log severity
Enumeration RESULT_TYPE
e synal ysi s. RESULT _STRUCTURE_START TYPE Start of structure
e synal ysi s. RESULT _STRUCTURE END TYPE End of structure
e synal ysi s. RESULT_STRUCTURE_ELEMENT_TYPE Structure element
e synal ysi s. RESULT_MASK_TYPE Result for mask value
Enumeration VALUE_TYPE
e synal ysi s. VALUE_TYPE_BI NARY Binary value
e synal ysi s. VALUE_TYPE_BOOLEAN Boolean value
e synal ysi s. VALUE_TYPE_NUMBER_UNSI GNED Unsigned number value
e synal ysi s. VALUE _TYPE_NUMBER_SI GNED Signed number value
e synal ysi s. VALUE_TYPE_NUMBER_FLOAT Floating-point value
e synal ysi s. VALUE_TYPE_STRI NGString value
Enumeration NUMBER_TYPE
e synal ysi s. NUMBER_| NTEGER Integer number
e synal ysi s. NUMBER FLQAT Float number
Enumeration NUMBER_DISPLAY_TYPE
e synal ysi s. NUMBER _DI SPLAY_DECI MAL Display number in decimal

e synal ysi s. NUMBER_DI SPLAY_EXPONENT Display number with exponent

synal ysi s. NUMBER_DI SPLAY_HEX Display number in hexadecimal

synal ysi s. NUMBER _DI SPLAY_COCTAL Display number in octal
* synal ysi s. NUMBER DI SPLAY_BI NARY Display number in binary
Enumeration STRING_LENGTH_TYPE
e synal ysi s. STRI NG_LENGTH_FI XED Fixed-length string
e synal ysi s. STRI NG_LENGTH_ZERO TERM NATED Zero-terminated string
e synal ysi s. STRI NG_LENGTH_PASCAL Pascal (length-prefixed) string

e synal ysi s. STRI NG_LENGTH_DELI M TER_TERM NATED Delimiter-terminated string

43

Scripting Reference

Class ByteArray

A byte array object represents mostly a larger memory chunk. The actual storage is handled by
ByteStorage objects.

Methods of Byt eAr r ay:
| ong getLength();

get length of byte array

del et eRange(| ong position,
I ong | ength);

delete range of bytes in byte array

Parameters:
position Position where to delete
I ength Number of bytes to delete

fill Range(l ong position,
| ong | engt h,
byte[] fillBytes);

Fill range of bytes in byte array. If the passed array is smaller than the number of bytes to fill
the array is repeated

Parameters:
posi tion Position where to fill
 engt h Number of bytes to fill

fillBytes Anarray of bytes to fill in range

writeSignedlnt(long position,
[ong | ength,
ENDI AN_TYPE endi anType) ;

Parameters:
position Position where to write (bytes)
I ength Number of bytes to write

endi anType Endianness of number to write

writeSignedlntBits(long position,
| ong | ength,

44

Scripting Reference

ENDI AN_TYPE endi anType) ;

Parameters:
posi tion Position where to write (bits)
| ength Number of bits to write

endi anType Endianness of number to write

writ eUnsi gnedl nt (1 ong position,
[ong | ength,
ENDI AN_TYPE endi anType) ;

Parameters:
position Position where to write
l ength Number of bytes to write

endi anType Endianness of number to write

writeUnsignedlntBits(long position,
| ong | engt h,
ENDI AN_TYPE endi anType) ;

Parameters:
position Position where to write (bits)
| ength Number of bits to write

endi anType Endianness of number to write

i nsertByte(long position,

char byte);
Parameters:
position Position where to insert
byte The byte to insert

repl aceByt e(l ong position,

char byte);
Parameters:
position Position where to replace
byt e The byte to replace

45

Scripting Reference

appendFil e(String fil eNane);

Parameters:

fileName Name of file to append

witeToFile(String fil eNane);

Parameters:

fileName Name of output file

Class ByteView
A byte view object is a proxy to a ByteArray object.
Methods of Byt eVi ew:
Byt eVi ew(Byt eArray byt eArray);

Parameters:

byteArray Byte array to create byte view for

Byt eArray getByteArray();

| ong getLength();

| ong findByteSequence(long start Pos,
[ong | ength,
buffer ,
size_t bufferLength);

byte readByte(l ong position);

Parameters:

position Position where to read the byte

i nt readSi gnedl nt(long position,
int length,
ENDI AN_TYPE endi anType) ;

46

Scripting Reference

Parameters:
position Position where to read the number
| engt h Length of the number in bytes

endi anType Little/big endian

int readSignedlntBits(long position,
int length,
ENDI AN_TYPE endi anType) ;

Parameters:
posi tion Bit position where to read the number
| engt h Length of the number in bits

endi anType Little/big endian

ui nt readUnsi gnedl nt (1 ong position,
int length,
ENDI AN_TYPE endi anType) ;

Parameters:
posi tion Position where to read the number
| engt h Length of the number in bytes

endi anType Little/big endian

ui nt readUnsi gnedl ntBits(long position,
int length,
ENDI AN_TYPE endi anType) ;

Parameters:
posi tion Bit position where to read the number
| engt h Length of the number in bits

endi anType Little/big endian

String readString(l ong position,
int length,
String encoding);

Parameters:
posi tion Position where to read the string
| engt h Length of the string in bytes
encodi ng Encoding of the string

47

Scripting Reference

Class Element

An element object represents one item in a structure.
Methods of El enent :

El ement El ement (ELEMENT_TYPE type,
String nane,
bool setDefaults);

Create object of type Element.

Parameters:
type The type of the element
nane The name of the element

set Def aul t s Set defaults for element?

String get Nane();

Get name of element.

set Nanme(String nane);

Set name of element.

Parameters:

name The new name of the element

String getDescription();

Get description of element.

set Description(String nane);

Set description of element.

Parameters:

nane The new description of the element

addFi xedVal ue(Val ue val ue);

48

Scripting Reference

Add fixed value to element.

Parameters:

val ue The actual value

Structure get Encl osi ngStructure();

Get the enclosing structure of the element.

String getlLength();

Get length of element. For binary or string elements a length of zero means to fill the enclosing
structure. Be aware that lengths can be fractions of bytes so call additionally getLengthUnit()

LENGTH UNI' T get Lengt hUnit ();
Get length unit of element. Valid values are
e LENGTH_UNIT_BYTES

e LENGTH_UNIT_BITS

set Col or Rgh(fl oat red,
float green,
float blue);

This color is displayed is background color for this element in the hex view.

Parameters:
red Red color component between 0.0 and 1.0
green Green color component between 0.0 and 1.0
bl ue Blue color component between 0.0 and 1.0

setLength(String | ength,
LENGTH UNIT Il engthUnit);

Set length of element. For binary or string elements a length of zero means to fill the enclosing
structure. The length can contain variables and expressions. For number and binary elements
you can specify a length unit LENGTH_UNIT_BITS additionally to LENGTH_UNIT_BYTES.

Parameters:

| engt h The new length of the element

49

Scripting Reference

Parameters:

| engt hUnit The new length unit (bits/bytes) of the element

ELEMENT _TYPE get Type() ;
Get type of element. This can be one of
e ELEMENT_BINARY
e ELEMENT_GRAMMAR_REF
e ELEMENT_NUMBER
e ELEMENT_STRING
e ELEMENT_OFFSET
e ELEMENT_SCRIPT
e ELEMENT_STRUCTURE

e ELEMENT_STRUCTURE_REF

bool nust Mat ch();

Get if this element has to match while parsing a file. For this check the min/max values are
checked and if one of the fixed values matches (if at least one is defined)

set Must Mat ch(BOOL rust Mat ch) ;

Set if this element has to match while parsing a file. For this check the min/max values are
checked and if one of the fixed values matches (if at least one is defined)

Val ue get M nVal ue();

Get minimum value of element. This is only valid for numbers. This value will be checked if the
"must match" flag is set.

Val ue get MaxVal ue();

Get maximum value of element. This is only valid for numbers. This value will be checked if the
"must match" flag is set.

El ement get Parent();

50

Scripting Reference

Get parent of element. There is only a parent element if the enclosing structure is inherited from
another structure.

Class Grammar

A grammar with all structures and their elements
Methods of Gr ammar :

String getDescription();

set Description(String description);

Parameters:

descri ption The description of the grammar

voi d addStructure(Structure structure);

Parameters:

structure The structure to be appended

void insertStructureAtlndex(Structure structure,
i nt index);
Parameters:
structure The structure to be inserted

i ndex Index where structure should be inserted

voi d del eteStructureAt|ndex(int index);

Parameters:

i ndex Index where structure should be deleted

Structure get Root Node();

void setStartStructure(Structure startStructure);

51

Scripting Reference

Structure get StructureByName(String nane);

Parameters:

name Name of the structure to get

Structure get StructureByl ndex(int index);

Parameters:

i ndex Index of the structure to get

int getStructureCount();

set Name(String nane);

Parameters:

nane The name of the grammar

String get Nane();

set UTI (String UTI);

Parameters:
UTI The UTI

String getUTI();

set Fil eExtension(String fil eExtension);

Parameters:

fil eExten- The file extension to be set
si on

String getFil eExtension();

52

Scripting Reference

readFronFil e(fil eNane);

Parameters:

fil eNanme The grammar file

witeToFile(fileName);

Parameters:

fil eNanme The grammar file

Class GrammarManager

The GrammarManager cares about loading and saving grammars

Methods of Gr anmar Manager :

Class Log

A log object is the central piece between log source and log target.

Methods of Log:

Class LogDest

A log destination object is responsible for writing log messages.

Methods of LogDest :

Class LogSrc

A log source object allows to write log messages to a log target, e. g. the messages window.
Methods of LogSr c:

| ogMessage(String nodul e,
i nt messagel D,
LOG SEVERITY severity,
String nessage);

Parameters:

nmodul e A domain of message IDs. Can be any string that lets you iden-
tify your messages

messagel D AnID to identify the message
severity Severity of the message
message The actual message

53

Scripting Reference

| ogMessageFor ced(String nodul e,
i nt messagel D,
LOG SEVERI TY severity,
String nessage);

Parameters:

modul e A domain of message IDs. Can be any string that lets you iden-
tify your messages

messagel D An ID to identify the message
severity Severity of the message

message The actual message

| ogMessageHi ghl i ght (String nodul e,
i nt messagel D,
LOG SEVERI TY severity,
String nessage);

Parameters:

nmodul e A domain of message IDs. Can be any string that lets you iden-
tify your messages

messagel D An ID to identify the message
severity Severity of the message
nessage The actual message

Class Mask

A Mask object represents a binary mask
Methods of Mask:
String get Nane();

Returns the name of the mask.

String getDescription();

Returns the description of the mask.

unsi gned i nt getVal ue();

Each mask has a value

54

Scripting Reference

Class NumberElement

A number element object represents one number item in a structure.
Methods of Nunber El enent :
NUVMBER DI SPLAY_TYPE get Nurmber Di spl ayType() ;
Get number display type. This determines how a number is displayed and can be one of
e NUMBER_DISPLAY_DECIMAL
e NUMBER_DISPLAY_EXPONENT
e NUMBER_DISPLAY_HEX
e NUMBER_DISPLAY_OCTAL

e NUMBER_DISPLAY_BINARY

set Nunber Di spl ayType(NUMBER_DI SPLAY_TYPE nunber Di spl ayType) ;
Set number display type. This determines how a number is displayed and can be one of
e NUMBER_DISPLAY_DECIMAL
e NUMBER_DISPLAY_EXPONENT
e NUMBER_DISPLAY_HEX
e NUMBER_DISPLAY_OCTAL

e NUMBER_DISPLAY_BINARY

Parameters:

nunber Di s- Type for number display in parsing results
pl ayType

set Nunmber Type(NUMBER _TYPE type);
Set number type of number element. This can be one of
e NUMBER_INTEGER
e NUMBER_FLOAT

@author Andreas Pehnack @date 2015-09-01 @see getNumberType

NUVBER_TYPE get Number Type() ;

55

Scripting Reference

Get number type of number element. This can be one of
e NUMBER_INTEGER

e NUMBER_FLOAT

set Endi anness(ENDI AN_TYPE endi anness) ;

Set endianness of number element.@author Andreas Pehnack @date 2015-09-01 @see getEndi-
anness

ENDI AN_TYPE get Endi anness();

Get endianness of number element.

set Si gned(bool signed);

Set if the number element parses a signed or an unsigned value

bool isSigned();

Query if the number element parses a signed or an unsigned value

Class NumberValue

Methods of Nunber Val ue:
ul ong get Unsi gned();

Get an unsigned integer from the value. Some implicit conversions are implemented.

voi d set Unsi gned(ul ong nunber);

Set an unsigned integer in the value.

Parameters:

nunber The unsigned number to be set

| ong get Si gned();

56

Scripting Reference

Get a signed integer from the value. Some implicit conversions are implemented.

voi d set Si gned(l ong nunber);

Set a signed integer in the value.

Parameters:

nunber The signed number to be set

doubl e get Fl oat () ;

Get a floating-point number from the value. Some implicit conversions are implemented.

voi d set Fl oat (doubl e numnber);

Set a floating-point number in the value.

Parameters:

nunber The number to be set

Class OffsetElement

An offset element object represents one file offset item in a structure.
Methods of Of f set El enent :
set Additional Offset(String additional Ofset);

Set expression which result to be added to parsed offset value

Parameters:

addi tion- String with expression
al O f set

Class Result

Result objects are created during the structure mapping process. Depending on their type they
refer to a structure or struct element and a value.

Methods of Resul t :

Val ue get Val ue();

57

Scripting Reference

Each result has a value.

Mask get Mask();

Mask results refer to a mask object.

Byt eVi ew get ByteVi ew();

Returns the byte view object the result was created for. This is useful to access the raw data of
large binary element results.

i nt getLevel ();

Returns the level of a result in the results tree.

int getlteration();

Returns the interation of a result in a sequence of repeated elements.

int getStartBytePos();

Returns the byte position of the result in the input file.

int getStartBitPos();

Returns the bit position of the result in the input file.

i nt getByteLength();

Returns the byte length of the result in the input file.

int getBitLength();

Returns the bit length of the result in the input file.

String get Nane();

Returns the name of the result.

58

Scripting Reference

Structure getStructure();

Returns the structure of the result. This is only valid if the result ist of type structure.

El ement get El enent () ;

Returns the structure elementof the result. This is only valid if the result ist of type structure.

updat e(Val ue val ue);

Modify byte array with new value.

Parameters:

val ue New value for result

RESULT_TYPE get Type();

Returns type of a result. This can be RESULT_STRUCTURE_START_TYPE, RESULT_STRUC-
TURE_END_TYPE, RESULT_STRUCTURE_ELEMENT_TYPE, RESULT_MASK_TYPE or
RESULT_MULTI

Class Results

A results object contains the results of the structure mapping process
Methods of Resul t s:

Result addStructureStart(Structure structure,
| ong start Pos,
int iteration,
String nane,
bool addSi zeToEncl osi ng);

The returned result can be used to remove all results from this on using the cut method. This
method is used usually when the structure is enclosed in another structure.

Parameters:
structure The structure that was mapped
start Pos Where in the file was the structure mapped? (bytes)

iteration How often was this structure mapped consecutively? (Array of
structures)

name Name to show for the result

59

Scripting Reference

Parameters:

addsSi ze- Add size to the enclosing structure result? Set this to true if the
ToEncl osi ng structure is actually contained in the enclosing structure in the
result tree.

Result addStructureStart At Position(Structure structure,
| ong start Pos,
int iteration,
String nane);

The returned result can be used to remove all results from this on using the cut method. This
method is used usually when the structure is referenced from another position and not enclosed
in another structure.

Parameters:
structure The structure that was mapped
start Pos Where in the file was the structure mapped? (bytes)

iteration How often was this structure mapped consecutively? (for ar-
rays of structures)

name Name to show for the result

Resul t addStructureEnd(l ong endPos);

The returned result can be used to remove all results from this on using the cut method.

Parameters:

endPos Where in the file did the structure end? Padding bytes are cal-
culated automatically

Resul t addEl enent (El enent el enment,
| ong | ength,
int iteration,
Val ue val ue);

The returned result can be used to remove all results from this on using the cut method.

Parameters:
el ement The structure element that was mapped
| engt h Length of the element in bytes

iteration How often was this structure element mapped consecutively?
(Array of structures)

val ue The value resulting of the element being mapped to the file

60

Scripting Reference

Result addEl enent Bi t s(El ement el enment,

| ong | engt h,
int iteration,
Val ue val ue);

The returned result can be used to remove all results from this on using the cut method.

Parameters:
el enent
[ength
iteration

val ue

The structure element that was mapped
Length of the element in bits

How often was this structure element mapped consecutively?
(Array of structures)

The value resulting of the element being mapped to the file

cut(Result result);

You usually do this when you parsed in a wrong way and need to reparse from a certain position.
So save a reference to the result where you may want to restart.

Parameters:

result

First result

Result getlLastResult();

This is the result that was added most recently.

Result getPrevResult(Result result);

Pass here the successor of the result you want.

Parameters:

resul t

The result you want the predecessor for

Result get Resul t ByNane(String nane);

The search starts at the end.

Parameters:

nanme

Name of the result you're looking for

Result get Root Result();

61

Scripting Reference

Get root result which contains the first layer of the parsing results.

export ToFil e(String fil eNane,
Format format);

Export tree of parsing results to XML or text file.

Parameters:
fileName Output file
f or mat Export format. Can be EXPORT_RESULTS_FORMAT_TEXT or

EXPORT_RESULTS_FORMAT XML

Class String

The String object contains a string ;)
Methods of St ri ng:

String get Encoding();

Class StringElement
A string element object represents one string item in a structure.
Methods of St ri ngEl enent :
String get Encoding();

Get encoding of string element.

set Encodi ng(Stri ng encodi ng);

Set string encoding of element.

Parameters:

encodi ng The new string encoding of the element

i nt getBytesPer Char();

Get the number of bytes a character needs. This information is derived from the selected string
encoding

62

Scripting Reference

STRI NG_LENGTH _TYPE get Lengt hType() ;
Get length type of string element. Valid types are:
e STRING_LENGTH_FIXED
e STRING_LENGTH_ZERO_TERMINATED
e STRING_LENGTH_PASCAL

e STRING_LENGTH_DELIMITER_TERMINATED

Class StringValue

Methods of St ri ngVal ue:
String getString();

Get a string from the value.

setString(String string);

Set the string in a value object.

Parameters:

string The string to be set

Class Structure
A structure object represents a structure in a grammar.
Methods of St r uct ur e:
G ammar get G anmmar () ;

Returns the grammar this structure is registered in.

set Alignment (int alignnment);

The structure is placed at a multiple of the alignment value.

Parameters:

alignment The alignment value

63

Scripting Reference

int getAlignnent();

The structure is placed at a multiple of the alignment value.

String getDescription();

set Description(String description);

Set description.

Parameters:

descri pti on The description of the structure
The description is just for documentation purposes.

Parameters:

descri pti on The default encoding

String get Nane();

Get name of structure. Get name of structure.

set Name(String nane);

Set name of structure.

Parameters:

name The new name of the structure

set Di sabl ed(BOOL di sabl ed);

Parameters:

di sabl ed Disable/enable the structure

setLength(String | ength,
LENGTH UNIT I engthUnit);

Parameters:
| engt h The new length of the structure
| engt hUnit The new length unit of the structure

64

Scripting Reference

set Repeat M n(String repeatMn);

Parameters:

repeat M n The new min repeat count of the structure

set Repeat Max(String repeat Max) ;

Parameters:

repeat Max The new max repeat count of the structure

i nt get El enent Count () ;

El ement get El ement Byl ndex(i nt index);

El ement get El ement ByNanme(String nane);

set Def aul t Encodi ng(String defaul t Encodi ng) ;

The default encoding will be used for all strings that don't specify the encoding explicitely.

Parameters:

def aul t - The default encoding
Encodi ng

String get Defaul t Encodi ng();

The default encoding will be used for all strings that don't specify the encoding explicitely.

set El enent Or der (ORDER_TYPE or der) ;

Variable order selects one matching element. Fixed order maps all elements consecutively.

Parameters:

order The element order in the structure

65

Scripting Reference

i nt appendEl enent (El enent * el enent);

Parameters:

el enent The element to be appended

voi d insertEl ement At | ndex(El enent * el enment,

int index);
Parameters:
el ement The element to be inserted
i ndex The index where to insert

voi d del et eEl ement At | ndex (i nt index);

Parameters:

i ndex The index where to delete

Class StructureElement

A structure element object represents one structure item inside another structure.
Methods of St r uct ur eEl enent :
Structure getStructure();

Get structure of element. This is only valid for elements of type ELEMENT_STRUCTURE.

Class StructureMapper
A structure mapper object maps the structures of a grammar to a file (ByteView / ByteArray).
Methods of St r uct ur eMapper :
| ong mapStructure(Structure structure);

The length of the structure is added in the results to the enclosing structure.

Parameters:

structure The structure to apply

| ong mapStructureAtPosition(Structure structure,
| ong position,

66

Scripting Reference

| ong size);
The length of the structure is not added in the results to the enclosing structure.

Parameters:
structure The structure to apply
posi tion Where to apply the structure

si ze Maximum space the structure can consume

| ong mapEl ement Wt hSi ze(El enent el errent
i nt maxSi ze);

The maximum length the element may take is also passed.

Parameters:
el emrent The element to be applied
maxSi ze The maximum size the element may have in bytes

| ong mapEl enent Wt hSi zeBi t s(El enent el enent,
int maxSi ze);

The maximum length the element may take is also passed. (in bits)
Parameters:

el ement The element to be applied

maxSi zeBi t s The maximum size the element may have in bits

set Dynam cEndi anness(ENDI AN_TYPE endi anness);

This endianness will be used by structure elements having set their endianness to dynamic.

Parameters:

endi anness The endianness to use from now on

ENDI AN_TYPE get Dynani cEndi anness();

The returned endianness is used by structure elements having set their endianness to dynamic.

Byt eArray getCurrentByteArray();

67

Scripting Reference

Byt eVi ew get Current ByteVi ew() ;

Structure getCurrent Granmmar () ;

LogSrc get Current LogSrc();

Resul ts get Current Resul ts();

Structure getCurrent Structure();

El ement get Current El enent () ;

long getCurrent O fset();

set Current O f set (unsi gned | ong of fset);

Parameters:

of f set New offset to continue processing after script

| ong get Current Remai ni ngSi ze();

process();

dunp(outputFile);

Parameters:

out put Fi | e Name of output file

Class Value

A Value object holds a single value being created in the mapping process

68

Scripting Reference

Methods of Val ue:
String get Nane();

Get name of value.

set Nanme(String nane);

Set name of value.

Parameters:

nane The alignment value

VALUE_TYPE get Type()
Get type of value. This can be one of
e VALUE_TYPE_BINARY

e VALUE_TYPE_BOOLEAN

VALUE_TYPE_NUMBER_UNSIGNED

VALUE_TYPE_NUMBER_SIGNED

VALUE_TYPE_NUMBER_FLOAT

VALUE_TYPE_STRING

69

Glossary

Here you find some terms explained in the context of this manual.

E

Endianness

G

Grammar

When you develop in high-level languages like Java or C you often don't
notice that the variables you work with are stored in a different byte order
in memory, depending on the machine you work on. Only if you display a
memory dump of structures or variables you see that the bytes may appear
in a different order than what you expected. This reverse byte ordering is
called little endian. Big endian means that the bytes of a variable in memory
are ordered as if you write the value on paper. There are CPUs that can
work both in little and big endian mode but usually you'll find little endian
on PC architectures while big endian is found on platforms like AIX or
Solaris (SPARC).

As mentioned the endianness is normally hidden from the casual program-
mer however if you dump structures or variables directly to a file or trans-
mit them via a TCP connection, it does play a role. Many file format spec-
ifications explicitly define the endianness of the data fields. There are file
formats that allow as well big as little endian interpretation for the num-
ber elements. Synalyze It! supports such formats with a feature called dy-
namic endianness — a script can define for a certain file if the elements
marked with dynamic endianness should be interpreted as little or big en-
dian numbers.

Figure 30. Litte/big endian example

32-bit value: 305419896 (decimal) or 12345678 (hex)

Big Endian: 12 34 56 78

Little Endian 78 56 34 12

Grammar in the context of Synalyze It! means a definition of the structure
of a certain file format. Just as spoken languages also binary files must
follow a set of rules to be able to be understood - be it by humans or by
computers. The definition of a grammar for binary files allows to parse
them by the generic parser in Synalyze It!. Those grammars are stored on
disk in XML format.

70

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Little_endian#Little-endian
http://en.wikipedia.org/wiki/Big_endian
http://en.wikipedia.org/wiki/Formal_grammar
http://en.wikipedia.org/wiki/XML

Glossary

I

Inheritance

P

Pascal strings

T

Text encodings

The term inheritance is used in Synalyze It! as in object-oriented program-
ming languages. In record-oriented binary file formats you often find sim-
ilar records that start with the same elements like record length or an iden-
tifier that identifies the record. Defining a parent structure once that holds
the elements which are shared by all child structures saves time, avoids
mistakes and makes the grammar easier to understand.

There are different concepts in the various programming languages how
text strings are stored in memory. In C-based programming languages the
length of a string is only determined by a byte with value zero after the last
character while in Pascal the first byte contains the length of the following
characters. Accordingly you find in binary files both types of text string
representations plus such of fixed-length.

A good part of the information computers process is text. Since computers
only know how to handle and store numbers, characters have to be repre-
sented by numbers. In the early days of computers storage was expensive
so characters were assigned to as least bits as possible. ASCII is still the
code page most people know however the 7 bits are only enough to repre-
sent 128 characters, including control characters like line feed or carriage
return. To represent text in non-English languages, more code points were
needed so many 8-bit code pages exist that base on ASCII or the EBCDIC
code invented by IBM. Nowadays memory is much cheaper and the hassle
of translating different code pages can be easily avoided by encodings that

71

http://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://en.wikipedia.org/wiki/Text_encoding
http://en.wikipedia.org/wiki/US-ASCII
http://en.wikipedia.org/wiki/Line_feed
http://en.wikipedia.org/wiki/EBCDIC

	Synalyze It!
	Table of Contents
	Chapter 1. Welcome to Synalyze It!
	Thank You
	Subscribe to the Synalyze It! Newsletter

	Chapter 2. What is Synalyze It!
	Chapter 3. Installation
	Chapter 4. Synalyze It! explained
	The Reference Document
	The Grammar Editor
	Structure Properties
	Binary Element Properties
	Custom Element Properties
	Grammar Element Properties
	Number Element Properties
	Script Element Properties
	String Element Properties

	The Histogram
	Compare Text Encodings
	Find Dialog
	Text Search
	Number Search
	Mask Search
	Strings

	Checksums dialog
	Data Panel Dialog

	Chapter 5. Scripting
	The Script Element
	The Script Editor
	The Custom Element
	Generic Scripts
	Grammar Scripts
	File Scripts
	Selection Scripts
	Result Processing Scripts

	Chapter 6. How Do I...
	Structure Inheritance
	Step by Step

	Match the right Structure
	Step by Step

	Chapter 7. Support
	Chapter 8. Reverse Engineering
	Chapter 9. Expressions
	Lengths of structure elements
	Repeat Counts
	Data Panel
	Jump to File Offset
	Expression Syntax
	Order of operators
	Internal Functions
	Internal Constants

	Chapter 10. Scripting Reference
	Enumeration ENDIAN_TYPE
	Enumeration LENGTH_UNIT
	Enumeration ELEMENT_TYPE
	Enumeration LOG_SEVERITY
	Enumeration RESULT_TYPE
	Enumeration VALUE_TYPE
	Enumeration NUMBER_TYPE
	Enumeration NUMBER_DISPLAY_TYPE
	Enumeration STRING_LENGTH_TYPE
	Class ByteArray
	Class ByteView
	Class Element
	Class Grammar
	Class GrammarManager
	Class Log
	Class LogDest
	Class LogSrc
	Class Mask
	Class NumberElement
	Class NumberValue
	Class OffsetElement
	Class Result
	Class Results
	Class String
	Class StringElement
	Class StringValue
	Class Structure
	Class StructureElement
	Class StructureMapper
	Class Value

	Glossary

