Synalyze

ser's Guide

Synalyze It!: User's Guide
Andreas Pehnack
Copyright © 2009, 2010, 2011, 2012, 2013 Andreas Pehnack

Synalysis makes no warranties as to the contents of this manual or accompanying software and specifically disclaims any warranties
of merchantability or fitness for any particular purpose. Synalysis further reserves the right to make changes to the specifications of
the program and contents of the manual without obligation to notify any person or organization of such changes.

Table of Contents

1. Welcome to Synalyze Tt! ... 1
2. What is Synalyze Tteoeiiiiiiiiiiiiii et 2
3. INStAllAtioNvvviiiiiiiiiiiiiiiiii 3
4. Synalyze It! explained ... 4
The Reference DOCUMENEccuiiiiiiiiiiiiiiiiiiii e 4
The Grammar Editorccccooiiiiiiiiiiiii i 5
The HISEOGTAIN ...eevvvieiiieeeiiiiiiiiiieee e e e ettt e e ettt e e e e ettt e e e e e s st eeeeeeeens 7
Compare Text ENCOAINGScoooiiiiiiiiiiiiiiiiiii 8
FInd Dialogoeviiiiiiiiii 9
Checksums dialog T e 12
Data Panel Dialog o 13
ST T 0 o 0V RPN 15
6. HOW DO L. o 21
7. SUPPOTE weviiiiiiiii e 24
8. Reverse ENgineeringccooooiiiiiiiiiiiiiiiiiiii s 25
9. EXPISSIONS ...ttt 27
10. Scripting RefeIeNCeuuuiiiiiiiiiiiiii e 34
GLOSSATY ...ttt 56

iii

List of Figures

3.1. Installation of the apPliCationccooriiiiiiiiiiiiiiiii e 3
4.1. Parts of the Reference DOCUIMENutiiiiiiiiiiiiiiiieeiiiiec ettt 4
4.2. Parts of the Grammar EditOrccuetiiiiiiiiiiiiiiiiiiiicceeiiec e 6
4.3. Parts of the Histogram dialogc.uvvveiiiieiiiiiiiiiicieetiiiiee e 7
4.4. Encoding comparison dialoguuuuueimiimimimiiiiiiiiiiiiiiiiiieieieeeeeee e 8
4.5. Text Search dialog «.......eeeiruiiiiiiiiiiie e e 9
4.6. Number $earch dialogcccovviuiiiieiiieeiiiiiiiiiieee ettt e et e e e 10
4.7. Mask Search dialogc.uveiiiriiiiiiiiiie et 11
4.8. Strings dialogcoooiiiiiiiiiiii s 12
4.9. ChecksUmS dialOgceevvuuiiiiiiiieeeiiiiiiieee ettt e e ettt e e e e st e e e e e 13
4.10. Data Panelcooiiiiiiiiiiii 14
5.1. Script editor WINdOWccooiiiiiiiiiiiiii s 17
6.1. Example of inherited structures (PNG chunks)ccooviiiiiiniiiiiiiniiiieiiniicceeeeen 21
6.2. Screenshot of inherited Chunk StruCturecoccvviiiiiiiiiiiiniiiiiceiiicceeeec e 22
6.3. Example of automatically matched Structurescccccovvviiiiiiiiieeiimmniiiiecceeeeene 22
6.4. Screenshot Of Chunks SEUCHUTEeviiiiiiiiiiiiiiiiciiiicc e 23
8.1. Create a grammar from the file to be analyzedcccooveiiiiiiiiiiiiiniicei 25
8.2, A SAMPILE TECOTAuviiiiiiiiiiiiiiiiiit it 25
9.1. Length @XPIeSSIONueeeiiietiiiiiiiiiitieeeetiiiiie et ee ettt e e e e e ettt eeeesseaannneeeeeees 27
9.2. Repeat cOUNt @XPIeSSIONccvuuuiiiiiiiiiiiii i 27
9.3. Data Panel ... 28
9.4. GO to POSition With eXPIeSSIONccovvuuiiiiiiiiiiiiiiiiiie e 28
23. Litte/big endian eXampleceoiiiiiiiiiiiieiiiiecee et 56

iv

Chapter 1. Welcome to Synalyze It!

No man can reveal to you nothing but that which already lies half-asleep in the
dawning of your knowledge.
—XKhalil Gibran

Thank You

Thank you for taking the time to read this manual. Here you'll find not only how to use Synalyze
It! but also essential knowledge about the analysis of binary files.

The idea behind Synalyze It! is to support you in all the tasks that are related to analysis of binary
files. Likewise, this manual is intended to help you make the most out of the application.

In any case I'm interested in your feedback. Be it positive, if you miss something or any other
improvement.

There are many clickable references in this manual to Wikipedia or the glossary at the end of the
manual that explains the most important terms related to Synalyze It!

Features only available in Synalyze It! Pro are marked with

Subscribe to the Synalyze It! Newsletter

Learn about the latest news, get relevant hints and tips about how to make most of the applica-
tion. Subscribe today:

* Go to the Synalysis web site http:/ / www.synalysis.net/
¢ Enter your email address in the box on the left side

e Click Subscribe

http://en.wikipedia.org/wiki/Khalil_Gibran
mailto:feedback@synalysis.net
http://en.wikipedia.org/wiki/Main_Page
http://www.synalysis.net/

Chapter 2. What is Synalyze It!

That is strength, boy! That is power! What is steel compared to the hand that
wields it?
—Thulsa Doom

At first glance the application will look mainly like a regular hex editor, however a powerful one
that supports many text code pages, allows finding not only text but also numbers, masks or all
strings in a file or displays a histogram.

But what really sets it apart from all the other hex editors is a the support of grammars. Gram-
mars? Yes, every binary file has a layout that enables certain applications to read and interpret
them. These layouts are called grammars in Synalyze It! because of the similarities to the struc-
ture of human languages. Grammar files are stored as plain XML files and describe all the struc-
tures and data fields that comprise certain formats.

If a grammar is applied to a binary file Synalyze It! highlights all elements of the file and makes
the analysis much easier. Even non-experts become able to decode the contents of files they have
a grammar for. Many grammars already exist at http:/ / www.synalysis.net/formats.xml and can
be downloaded for free.

With Synalyze It! you are able to
* Display and edit files of unlimited size

¢ Analyze unknown binary file formats

Apply the grammar you created to any similar file

* Compare a sequence of bytes in different text encodings

See in a histogram how often different bytes occur in a file

Get a list all strings in a file
* Do much much more, especially with the Pro version

The scripting support in the Pro version allows to write custom Python routines that process the
parsing results, import, export or modify grammars, manipulate files or fill gaps of the generic
parser.

http://en.wikipedia.org/wiki/Thulsa_Doom

Chapter 3. Installation

I don't necessarily think that installation is the only way to go.
It's just a label for certain kinds of arrangements.

—Barbara Kruger

If you bought Synalyze It! via the Mac App Store, the installation is done for you automatically.
Users who downloaded the software from the web site simply drag Synalyze It! after uncom-
pressing to their application folder.

Figure 3.1. Installation of the application

If you install grammar files via the application they are stored in the path

~/ Li brary/ Cont ai ners/ com synal yze-it. Synal yzel t Pro/ Dat a/ Li brary

[Application Support/Synalyze It! Pro/ G amars

by Synalyze It! Pro and

~/ Li brary/ Cont ai ners/ net. synal ysis. Synal yzelt/ Dat a/ Li brary

/ Appl i cation Support/Synal yzelt/ G anmars

by Synalyze It! Those grammars are suggested automatically for appropriate files you open.
Scripts are stored in

~/ Li brary/ Cont ai ners/ com synal yze-it. Synal yzel t Pro/ Dat a/ Li brary

/ Application Support/Synalyze It! Pro/Scripts

and will be embedded in grammars if you reference them.

http://en.wikipedia.org/wiki/Barbara_Kruger

Chapter 4. Synalyze It! explained

The cause is hidden; the effect is visible to all.
—Ovid

In Synalyze It! you mainly work with two types of windows: the actual files you're analysing
or using as a reference to build a grammar and the grammar editor that lets you make up the
structures and elements of grammars. The Pro version features additionally a scripting editor.

The Reference Document

The first thing you see when opening an arbitrary file is a hex dump and a text representation
of the bytes. The editing functions work the same like in a text editor - you can overwrite, insert
and remove bytes, select and copy bytes or text to the clipboard and so on.

The hex editor window is the starting point when exploring the details of a file. Much of the ap-
pearance can be customized like colors, position and selection number formats. There are plenty
of text encodings that can be selected to decode not only ASCII-encoded text but also Unicode
or EBCDIC as still found on IBM systems like z/OS or in formats like IJPDS.

There is a primary and a secondary selection for hex bytes and text. Per default the primary
selection is displayed in darker blue than the secondary selection. The contents of the primary
selection are displayed in the table below the hex editor and are copied to the clipboard when
you press Cmd+C (copy) or Cmd+X (cut). Switch between the selections with the Tab key and
toggle insert/ overwrite mode with Cmd+K.

Figure 4.1. Parts of the Reference Document

Byte (hex)
representation
of file

Go to position in file File name Select/create Parse file again after Select/create script
Hex with '0x' prefix Text encoding Alt+click to grammar amm [g han that processes the
Relative with +/- see location for file grammar change parsing results |-

(l
Start result
lected byt
Selected bytes eo0o 1 e // processing script -

switch with Tab key e
Position [1s0_8859-1:1087] [GIF grammar oY o [<none> N » - explicitely
Go To Position Encoding Grammar Parse Results Seript Process Results
—ee CIFfad.a.é..pE. | | Position Element Value
Text representation 0x00 T GIF file (0] Results of parsing
. a v N
with selected 0x00 Header [0] with selected
N 0x00 EyeCatcher Eye catcher: GIF
encoding 0x03 Version 87a grammar
0x06 ¥ LogicalScreenDescriptor [0]
—— Binary 100
Position Find using selection... Custom > gz“
Compare code pages... Grammar Reference
hex/dec/oct) or
(he; /dec/oct) Save selection... Number plorindex 0
line number Fill selection... Offset » o 2
w63 Enclose in Structure String ytes
B Hex 188 89 86 FE 48 5E 5o 08 v Connect to Results Structure
- Bod Decimal A 33 5 DA 48 74 FA BC DD Eweootas T] Structure Reference >
Selection start, end, 8 Octal B9 595 AC 1108 € 98 89 FA BC| polz.. PauOl. G
length and content o Line 811D 176635 9% £ D 6F B[40 15 8005
(for clipboard) ol o a2 20 28 26 20 9F 37 2044 7| TS I((, 7 07 + Connect to Hex View
126 45 1D 51 13 45 14 14 77 96 15 1A 65 10 72 6F 68| £ .E..r. rok Export >
Start End Length Content - Display Position >
0x53 OxAA 0X58 ey 00336598
Help for 2) [CIF file[0] o <unused> ge“;"al
hex editor window el —
Allcolumns >
Position | Module | Number |4 oD
Gasllg odulaby o
0%0A MAP 1 DEBUG Read value for element 'PackedFields" '0xFS'
00T [le pos Hex Read value for element 'BackgroundColorindex': '
Path of currently Ok e e Derimal | Read value for element PixelAspegRatio’s 0’
selected result oxol P 2Y e P M2" _ ' stop mapping 'LogicalScreenDesfriptor’ - maximum repeat count "1’ reached
B | Empty | [Hide if successful [Al Debug Messages

Empty log
message list

Which (parsing)
messages to display

Help for messages

Hide message
drawer if parsing Log messages
was successful

http://en.wikipedia.org/wiki/Ovid
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/EBCDIC
http://en.wikipedia.org/wiki/Z/OS
http://www.kodakversamark.com/pdfmanuals/0113991-603.pdf

Synalyze It! explained

The contextual menu of the hex view allows you to search in the file, compare text in different
encodings or save the selected bytes to disk. The Pro version additionally allows to fill the selec-
tion with text or bytes.

Once you selected a grammar for the file in the toolbar, the window is split and on the right side
you see the the parsing results. The contextual window of the hex view offers now some more
options: you can add a new element or structure to the grammar and link the hex view to the
results view. This means that wherever you click in the hex view, the corresponding result will
be selected on the right-hand side.

The parsing results are not only displayed, you can edit the values and they will be translated
back to the file. For all editing in the file unlimited undo and redo are available.

The Pro version provides more means to work with the parsing results. You can save them as an
XML or text file and even process them with a custom script. Some sample scripts are available
on http:/ /synalysis.net/scripts.html.

The Grammar Editor

When starting to create a new grammar you will mostly do the first steps in a reference file that
serves as a model. There you can select the bytes that should be interpreted as a structure, number,
string or another element. This immediate feedback — per default the grammar is applied after
each change — lets you quickly set up a basic grammar.

However, a good grammar avoids redundancy and makes use of the powerful inheritance fea-
ture. The grammar editor lets you craft elegant grammars that represent file formats as abstract
as possible.

http://synalysis.net/scripts.html

Synalyze It! explained

Figure 4.2. Parts of the Grammar Editor

File name
Delete current Delete current B . Contact author of
Grammar info Alt+click to
structure element N grammar
see location
—_—
) /
Add structure "\ 800 | gif.grammar 7
R " o o — g i
Add Structure Delete Structure Delete Element Grammar Info_Share Gontact Author
Element Type
 EE—— b
M "‘:"‘H"'eﬂ (o) Name: | LogicalScreenDescriptor
v @ Header
Grammar structures - N
L = EyeCatcher String Extends: | <none>
and elements T rsion String
v = LogicalscreenDescriptor Consists of: | <none> |
= Width Number)
= Height Number Length: ~] Bytes [derived
(= PackedFields Number Alignment: |0 v | [derived
= BackgroundColorindex Number
= PixelAspectRatio Number Element order: | Fixed 2] [derived
Repeat: | <none> N
min: |1 Y Properties of
structure/element
max: |1 > derived
N—
Stroke Color: NN ¥ derived
Fill Color: M derived g
Elernent Defaults \f—\
Which elements are
Endianness: | Little (¥ derived derived from the
Signed: | No [V derived parent structure?
Encoding: | 1SO_8859-1:1987 (¥ derived
Debug (# derived
+ - 7
p
Position | Module | Number _ Severity | Message
Add/remove
currently selected
structure/element
e p | Empty | (] Hide if successful [No Debug Messages
Hide message .
Empty log . g Which messages to
. drawer if parsing Log messages . Help for messages
message list display
was successful
D —

You can easily rearrange structures and their elements by drag and drop, pressing the Alt key
duplicates them.

Structure Properties

e Extends - Select here the structure to inherit from. Only top-level structures can inherit from

other top-level structures
Consists of - Select here a parent structure if the structure consists of multiple similar records.

Length - The structure length in bytes. You can also select here the name of an integer number
element inside the structure or which was parsed before.

Alignment - If a structure must start at a multiple of n bytes, use the alignment field.

Element order - Choose a fixed element order if all elements in the structure have to appear in a
fixed order. If only a single element of many is expected, choose variable.

Repeat - The name of an integer number element that specifies how often to repeat this struc-
ture.

min - The minimum repeat count. Parsing fails if that number is not reached.

Synalyze It! explained

max - The maximum repeat count. Parsing stops if that number is reached. Select unlimited if
the structure should fill the remaining space (determined by the enclosing structure).

Stroke Color - The color of the path drawn around this structure in the hex view.

Fill Color - The background color of this structure in the hex view.

Endianness - The default endianness of elements in this structure.

Signed - The default "signedness" of elements in this structure.

Encoding - The default encoding of strings in this structure.

The Histogram

When beginning to analyze a binary file, especially if you don't know which format it has, a
histogram can be quite useful. Histograms in Synalyze It! show you at a glance the frequency of
all bytes and provide an impression of the characteristics of a file. In many file formats you'll see
that certain bytes are more frequent than others; usually those bytes are an essential part of the
basic format structure like record separators. An equally-leveled histogram is mostly evidence
of compressed or encrypted files.

Figure 4.3. Parts of the Histogram dialog

The file being

analyzed

=| MAURER.AFP

4.70%

Histogram showing

Percentage at

frequencies A,
mouse position
of bytes
a%h | 1 . 0xC6: 3.173%
0x00

Hex Decimal Octal Char Count w Percent

0xD3 211 0323 o] 1570 4.704% 0

OxFO 240 0360 3 1305 3.910%

0xC6 198 0306 £ 1059 3.173%

0xD2 210 0322 o 1023 3.065%

0xC7 199 0307 C 897 2.688%

0xC4 196 0304 A 878 2.631%

OxF1 241 0361 A 875 2.622%

OxF4 244 0364 [} 853 2.556%

0xC2 194 0302 A 852 2.553%

0xC3 195 0303 A 852 2.553%

0xC5 197 0305 A 852 2.553%

0xC1 193 0301 A 843 2.526%

0xF6 246 0366 o 843 2.526%

OxF7 247 0367 + 843 2.526% ‘

0xN4 212 0324 0 R42 2.523% 1
@

Y S S N U WD

Hex Decimal Octal Character
. . . . Count how often Percentage of
representation representation representation representation o e
byte occurs in file byte count
of byte of byte of byte of byte

Synalyze It! explained

Compare Text Encodings

In cases where you are not sure how text is encoded in a certain file the code page comparison
dialog can be an indispensable help. It displays a sequence of bytes translated to text via dozens
of encodings. Additionally a confidence value is computed that tells you the probability that
an encoding matches. The table shows both a translation of the text at the top to bytes and a
translation of the bytes at the top to text with all available encodings. For more information about
text or character encodings, see Text encodings in the glossary.

Figure 4.4. Encoding comparison dialog

The file being

analyzed

D —

Text to be

analyzed 800 . russian-utf8.txt

\> Text: N DN B D+b¥% N DD'N D, DD% N D;0°N D,D£D% N 0:0°N B =% | (7)
)

Text encoding used /——> Encoding: | ISO_8859-1:1987 =

for hex Hex: D181DOBFDOBOD1BIDOBSDOBLIDOBEOADI 81 DOBFDOBOD1B1DOEBS DI
representahon [Code page Confidence | Text Representation Hex Representation
Ulr-16 U ERUEUET WESHMES FFFEULUU 200U DU UUBF U

UTF-16,version=1 0 O WEWEE - FFFED1 00 20 00 DO 00 BF 0
Hex UTF-16,version=2 0 SR [EECRES - FEFF 00 D100 20 00 DO 00 B
representation UTF-168E 0 E?ﬂ%ﬂgy &!:_ier.q!.%k_l--‘ 00 D1 00 20 00 DO 00 BF 00
UTF-16BE,version=1 0 SR EEGIRES - FEFF00 D100 2000 DO 00 B
of text UTF-16LE 0 MU Esnsa3ES7/- D100 20 00 DO 00 BF 00 DO
UTF-16LEversion=1 0 LR eSS WESZ - FFFED1 00 20 00 DO 00 BF 0
UTF-32 0 VOVVOOO0OHOO... FFFE0000D1 000000200
UTF-32BE 0 VOOVH9HHHHH... 000000D100000020000
UTF-32LE 0 V0009090909690, D100000020000000DO
UTF-7 0 V00090900090, 2B414E45202B414E414
UTF-8 100 cnacubo cnacubo cnacu... C39120C390C2BFC390

UTF16_OppositeEndian
UTF16_PlatformEndian
UTF32_OppositeEndian
UTF32_PlatformEndian
windows-1250

0 BRI EESEREE- 00 D1 00 20 00 DO 00 BF 00

0 FEELHRE S SWESZ, - D100 20 00 DO 00 BF 00 DO

0 .. 000000D100000020000

0 V09099066006, D100000020000000D0

0 NDzD*N D D=bI NPz... 1A201A1A1AB01A20 1A
windows-1251 0 CFPiP°CIP&P+Ps CfPiP°... 1A 20 1A 1A 1A B0 1A 20 1A
windows-1252 0 NDH°N B D=+b¥% N ;... D120 DO BF DO BO D1 20 DO
windows-1253 0 P QMNP MEN=M"Y PM... 1A 20 1A 1A 1A BO 1A 20 1A
windows-1254 0 N GC°N G E+63% NG, D120 1ABF 1ABOD1 20 1AB
windows-1255 1] gl Mkl % it %) 1A20 1ABF 1ABO 1A 20 1AB
windows-1256 0 L5, 4tuy, Wik, 408y, 1A201A 1A 1ABD 1A 20 1A
windows-1257 0 N 525°N 325+5% N 323... 1A20 1A 1A 1ABO 1A 20 1A
windows-1258 0 NDH°N D D+b¥ N ;... D120 1ABF IABOD1 20 1AB
windows-874-2000 0 “eWe§ vernen”eWeg veen... 3F 20 3F 3F 3F 3F 3F 20 3F 3F
windows-949-2000 0 OIEZONMR GEEQ... 3F20ABA2 A2 AFABA2 AL

4 4 A A
Code Pfflge/ Probability in % Text representation Hex representation
encoding of bytes (hex) of text

Synalyze It! explained

Find Dialog

Synalyze It! lets you search not only for text but also numbers, masks and display all strings in a
file. You can open the find dialog in the contextual menu of selected text or by pressing Cmd+E
(find selected text). Cmd+F opens the search dialog with the text from the find pasteboard which
may be filled by the search dialog in another application. The search results are updated while
you type. Double click a result in the find dialog to jump to the file position of the search result.
You may use the find dialog not only to search but also to convert text or numbers to bytes or

to get a binary representation of a few bytes.

Text Search

Unlike most other hex editors Synalyze It! lets you select one of many text encodings to have
full control over the bytes that are actually searched. You can edit either the text or the hex rep-

resentation of the searched bytes.

Figure 4.5. Text search dialog

for hex
representation

The file being
analyzed
{ 3
Text to be 800 short.afp
searched [Text | Number Mask Strings |
~— P Value: INDEX]|

ar

{ " ‘ o
Text encoding used /—" Encoding: | IBM500

COD5C4C5E7

/ Hex
v
3\

Hex
representation
of text

| Position
0x01CB82 00
0x01CBDD 00
0x01CC38 06

0x01CC93 00
0x01CCEE 00
0x01CD49 00

Results: 6

A

INDEX
INDEX
INDEX
INDEX
INDEX
INDEX

co
AC
SE
TI
(0]
P5

text was found

Position where]

Number of results

Found text and
some bytes around

Synalyze It! explained

Number Search

The number search feature makes it easy to search for an integer number in a file. Not only you
can define the number length but also if it is represented in little or big endian format.

Figure 4.6. Number search dialog

The file being
analyzed
{ 3
Number to be .00 shortafp
searched I Text | Number | Mask = Strings |
I — 5 vale: [211]
(‘/——> Format: | 8 Bit o] | Unsigned |'§] Big Endian
Number format
used for hex Hex: D3
representation /
v
{ 3
HEX Position
i 0x000003 5A 0@ 98 D3 EE EE 80 00 00 0
representation 0x000008 90 0 08 C6 C9 D3 5 C8 C5C1C4
of number 0x0000A0 @ 0@ 5A 80 41 D3 EE EE 00 00 00
0x0000E6 @0 0@ 5A 00 10 D3 AB C6 00 0@ 0D
0x0000F1 €307 D9 C5E2 D3 C9 C2 00 3@ 00
0x0000FB @0 0@ 5A 0@ 2B D3 EE EE 00 0@ 09
0x000128 @0 0@ 5A 0@ 28 D3 EE EE 00 6@ 00
0x00013C 60 E2 E3 C1C2 D3 C5 40 40 4@ 49
0x000158 @0 0@ 5A 00 28 D3 EE EE 00 0@ 00
0x000185 @0 0@ 5A 00 1C D3 A CE 00 80 09 +

A ANNT RS A AR A A A e AR A s b
Results: 1532 T @
4 4

Position where]

text was found

Found b d
Number of results ound numbers an Help button
some bytes around

Mask Search

If you want to find a sequence of bytes with certain bits set, the mask search was developed for
you.

10

Synalyze It!

explained

Figure 4.7. Mask search dialog

The file being
analyzed
N\
Mask to be 800 short.afp
searched [Text = Number | Mask | Strings |
N————————> hex: D3
1/—--> Binary: 1101001111111111
Binary
representation
of mask

v,
Position
0x002451 @120 00 8@ 8@ D3 FF E9 B2 88 FF E9
0x0024C1 120 06 80 86 D7 FF E9 B1 68 01 88
0x0068AB @3 18 00 00 B0 D3 FF E9 02 88 FF E9
0x009739 FO 8@ 00 F@ 80 FF FF FF FF FF FF FO
0x00973A 80 @@ FB 8@ FF FF FF FF FF FF F@ 80
0x009738 @@ F@ 00 FF FF FF FF FF FF F0 08 Fo
0x00973C F@ 8@ FF FF FF FF FF FF F0 00 F2 20
0x00973D 80 FF FF FF FF FF FF F@ B0 F8 08 Fo
0x009798 OF 86 FC 3F 80 FF FF 80 FF FF 80 F7
0x009798 3F 86 FF FF 80 FF FF 88 F7 E7 808 F@

Results: 6

Position where
mask was found

4

R

Found bytes and
some around

Number of results Help button

Strings

There's a Unix tool that offers the same functionality on the command line however in Synalyze
It! you can even select in which text encoding the strings should be found.

11

http://en.wikipedia.org/wiki/Strings_(Unix)

Synalyze It! explained

Figure 4.8. Strings dialog

The file being

analyzed

)
Minimum 800 simple.doc
string length |"Text | Mumber Mask | Strings |

\F Length: 5 ~| @ ... and longer
/l’.ncoding: | 1S0_8859-1:1987 &

|

4 Find longer

strings

Text encoding

of strings

Position

UXUUZ35A [Content_Types|.xmlPK -

0x00237D ! ¥05¢cA 6

0x002398 / _rels/.relsPK -

0x0023D4 theme/theme/themeManager.xmlPK -

0x00241E 0 theme/theme/themel.xmlPK -

0x002462 theme/theme/_rels/

0x00249F <?xml version="1.@" encoding="UTF-g8"

0x0024D8 "?> «<airclrMap xmlns:a="http:// m

0x002889 n=0o=0/

0x002C28 « +'208 L

0x002D00 Normal.dotm bi

Results: 184 \ ®
A %

Position where

mask was found

Found strings and

Number of results
some chars around

Help button

Ak‘

Checksums dialog

Binary files often contain check sums to detect or even correct unwanted modifications. Synalyze
It! Pro lets you compute them on the currently selected bytes. All supported hash algorithms are
immediately recomputed if you change the selection.

Supported checksums/hash values:
e Adler-32 - Used for example in zlib
* CR(C32 - Cyclic Redundancy Check

e MD4 - MD4 Message-Digest Algorithm

MD5 - MD5 Message-Digest Algorithm

RIPEMD-160 - RACE Integrity Primitives Evaluation Message Digest

SHA - Secure Hash Algorithm

SHA-1 - Secure Hash Algorithm 1

12

http://en.wikipedia.org/wiki/Checksum
http://en.wikipedia.org/wiki/Adler-32
http://en.wikipedia.org/wiki/Zlib
http://en.wikipedia.org/wiki/CRC32
http://en.wikipedia.org/wiki/MD4
http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/RIPEMD-160
http://en.wikipedia.org/wiki/SHA-0#SHA-0
http://en.wikipedia.org/wiki/SHA-1

Synalyze It! explained

SHA-224 - Secure Hash Algorithm 2 with 224 bits

SHA-256 - Secure Hash Algorithm 2 with 256 bits

SHA-384 - Secure Hash Algorithm 2 with 384 bits

SHA-512 - Secure Hash Algorithm 2 with 512 bits

Sum[16 Bit] - Sum of all bytes in an unsigned 16-bit integer

Tiger - Tiger hash value with length 192 bits. Optimized for 64-bit platforms

Whirlpool - Whirlpool cryptographic hash function

XOR - All selected bytes XOR'ed

Figure 4.9. Checksums dialog

100 (9 6 00 68] 02 6o SA SA[00 00 61 60 62 60 27 04 60 04 15 03 00 60 00 82 10 60 63 50
¥FC
3118 |FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2
334|FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF 82|
FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2 FF @2

EEEREAREN
EARRE RN
AR AR ERN

M zjstream_sample.prn

ace Value

31DC Adler32 66F23334

1F8 S87ABC24
n14 MD4 B4675116DB5015686A2E3DBBEF7 17FE6 L
1236119 23)60 60 @ D5 3696A88E4BB567COD26D8BF732F0D6930
j24c|5A SAl0@ @0 @ pipEMD-160 599D8706E7BE54076F07143B0EDD41701909E401
1268 | B0 WG JURIEAN <11a 40E7D7BA14BA9D47AA0091661CBBBAEDFA68CBET vy
[ZBH[ES 26 A0 73 € ¢y 101 2FBFODE42B854FSE7607BCD2E6FBEACCEFO1658A fink
:x 2 : 52 :2 : SHA224 00BE3FBFA7EF09FCOE600D66CFODCFAC SBOED463AFDELD4. .. l:g
savslre 12 80 =7 4 SHA256 3BB248371074E83B63680483A1049153346F5348BABA37SB...
srelie g 15 o 4 SHA384 D8314A04796AAA36DSA7AA4DA0BEEBRI7CFO34CI27CDR2 .. | o
1910022 A= co o g SHAS12 DOBABC4F616146CSCFSEBCF2753ACOSEIOACE3EFSDF22CA... | ¢
12c|43 3¢ 28 g7 4 SumI16 Bit] 3333 p.0
yaaler £ 28 aF 3 Tiger F8DFD81A4728E552E80F3 LFOF6BECDFO0526BEETEB2DABBE ;.
136el82 45 65 £1 4 Whirlpool 8C50499E45B9A06FABI7AB23BESCO82BFO0304C49DES367... 5
1388|79 62 71 92 1 XOR FD 2.
339C|15 4A 82 18 1 AT
- ———— 102 selected bytes [%
3304 |CC DE 5B AS I .- - bb.'

Data Panel Dialog

Mostly you'll work in binary files with a hexadecimal representation of the contents. However
humans are more familiar with decimal numbers. Synalyze It! Pro displays selected bytes in
common variable sizes (8, 16, 32 and 64 bit), signed and unsigned. Additionally RGB and CMYK
colors are shown for the selected bytes as well as a binary translation. The bytes can be interpreted
alternatively in little or big endian.

13

http://en.wikipedia.org/wiki/SHA224
http://en.wikipedia.org/wiki/SHA256
http://en.wikipedia.org/wiki/SHA384
http://en.wikipedia.org/wiki/SHA512
http://en.wikipedia.org/wiki/Tiger_(cryptography)
http://en.wikipedia.org/wiki/Whirlpool_(cryptography)
http://en.wikipedia.org/wiki/XOR
http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/Decimal
http://en.wikipedia.org/wiki/RGB
http://en.wikipedia.org/wiki/CMYK

Synalyze It! explained

Figure 4.10. Data Panel

0x8B 0x8E 0x04

FC000000

(7) [ICCFilel0] > Tag Table[0] » Copyright Tag Table Element[0] > Tag Size[0] |

e006 |} AdobeRGB1998.icc — Locked
[position| [150_8859-1:1987 o [Icc profiles ol c
Go To. Encod ? _ Grammar i Parse. e i
+. .BADBE....mntrR Position Element Value
Rz D .3 0x54 Profile ID 00 DO VU 0D VY UV 0O OC
_acspAPPL. . .ron 0x64 Reserved 00 00 00 00 00 00 00 0C
0x80 Tag Count 10
0x84 ¥Tag Table [0]
0x84 ¥ Copyright Tag Table Element [0]
0x84 Tag Signature cprt: 63 70 72 74
0x88 Tag Offset OxXFC
0x8C Tag Size 50
OxFC ¥ Copyright Tag [0]
OxFC ¥ textType [0]
OxFC AdobeRGB1998.icc
0x100 Type Value
Ox104 8 bit Unsigned Integer 252 dobe §)
74 65 78 OXFC 8 bit Signed Integer -4
43 6F 7079 72 69 67 68 74 20 32 30| t....Copyright 20 0x90 16 bit Unsigned Integer 64512
@x110|30 30 20 41 64 6F 62 €5 20 53 79 73 74 €5 6D 73 20| 0@ Acobe Systems 0x90 16 bit Signed Integer -1024 '
@x121|49 6E 63 EF 72 70 6F 72 61 74 65 64 20|20 0064 65| Incorporated...de x4 32 bit Unsigned Integer 4227858432
:iﬁ 0x98 32 bit Signed Integer 67108864
- — w 0x130 64 bit Unsigned Integer 18158513698403280243
mzmmww o . 0x130 64 bit Signed Integer -288230375306271373
B . o 60 20(60 00 00 06 06 00 09 20|60 06 0006 o5 0x130 32 bit Float -26584559915698317458076141205606 |
[— s Ox134 64 bit Float -19490631681687366050486494863101
2x198 00 02 00 02[58 59 SA 2620 63 00 00] 0x138 24 bit RCB
0x13C 32 bircmvk
Binary 11111100 00000000 00000000 0000000
0x14D
0x151 e TR ———
(63 75 72 7o]00 a0 00 oe] o) 0x155 e mEER o) S Tseonlyselededdaia
0x156
0x158 Localizable Macintosh description count 0
Length Content 0x159 Localizable Macintosh description

14

Chapter 5. Scripting 2]

I can't remember what my first script was.
—Tom Stoppard

Even without scripting Synalyze It! is quite a useful tool that allows to analyze files of many
file formats. However, there are rare cases that are better handled by custom scripts so the user
interface doesn't have to become more complex. Additionally, the scripting features of Synalyze
It! Pro let you automize various tasks.

You can write scripts

* in script elements, for example to control the endianness of a file

e in the script editor for custom data types or for automatization purposes

There are different types of scripts:

e Generic - can be started from the menu in any context. Use this for helper functions or the like

* Grammar - works on grammars. Useful for importing into, exporting from or modifying gram-
mars

File - works on files. Can be used to modify opened files

Data type - scripts to be used by custom elements

® Process Results - processes parsing results. Handy for exporting to an own format

Selection - processes only the selected bytes in the hex editor

Scripts can be available globally or in the context of a grammar. The scripting editor shows a
separate list of global scripts and for each opened grammar.

For all scripts in Synalyze It! Pro you can choose Lua or Python depending on your language
preferences. See The Script Page for useful sample scripts. Or course, if you develop a script that

may help another user, it would be great if you share it!

The scripting reference has detailed information about all available classes and methods.

The Script Element

Sometimes the standard grammar structures and elements are not enough to parse a file format.
For example, in a ZIP file it is best to start at the end but Synalyze It! usually at the first byte. A
script element can continue the parsing at another file offset.

-- Lua script that continues parsing at end of file

15

http://en.wikipedia.org/wiki/Tom_Stoppard
http://en.wikipedia.org/wiki/Lua_(programming_language)
http://en.wikipedia.org/wiki/Python_(programming_language)
http://synalysis.net/scripts.html

Scripting

-- get byte view of analyzed file
byt eVi ew = current Mapper: get Current Byt eVi ew()

-- get file length
fileLength = byteVi ew getLength()

-- query granmar applied to file
current Grammar = current Mapper: get Current G anmar ()

-- get the structure we want to apply
structure = current G ammar: get St ruct ur eByName
("ZI'P end of central directory record")

-- parse at file offset fileLength-22 the structure queried above
byt esProcessed = current Mapper: mapStruct ureAt Position
(structure, fileLength-22, 22)

Another common application of script elements is to select dynamically if the number elements
should be parsed in little or big endian mode.

-- Lua script that sets endi anness dependi ng on val ue of previous el enent

-- get collection with results so far
results = current Mapper: get Current Resul t s()

-- get latest added result
| ast Result = results:getlLastResult()

-- access the parsed val ue
val ue = | ast Resul t: get Val ue()

-- get the val ue parsed
signature = value:getString()

if (signature == "JZJZ") then

cur rent Mapper : set Dynam cEndi anness(synal ysi s. ENDI AN_BI G
el se

cur rent Mapper : set Dynam cEndi anness(synal ysis. ENDI AN_LI TTLE)
end

In order to make this work the endianness of the number elements in the grammar has to be
set to dynamic.

The Script Editor

All scripts apart from the ones in scripting elements are edited in the script editor.

16

Scripting

Figure 5.1. Script editor window

Show script
properties

Synalyze It! Script Editor

Add new script

Script Info

Available script
classes and
methods

custon data typs soript

def parseByteRonge(slenent, byteVisw, bitPes, bitlength, results):
this method parses dota storting ob bitPos, bitlength bits ore remaining
“"parseByteRange nethod"""

Scripts
¥ Clobal
Global scripts ¥ Grammar
Export To C

VFile

create ond set new value

Import iHex value = Value:
v Data Type value.setString("Valus of custon elewent")
DOSDateTime

how nany bytes were processed?
processedBytes - 8
iteration = @

HexStringLength

¥Sample Grammar results.addE lewent (e lenent , processedBytes, iteration, value)

¥ Ceneric
Another Script # reburn nunber of processed bytes
return pracessedBytes
¥ Grammar

Scripts stored
in grammar

FiliByteRange(value, byteArray, bitPos, bitlength):
this method translates edited values bock to the file
L IByteRangs method"" "

Sample Script

write an integer back to file
bybeArray writelnsignedIntBits(highéord, bitPos, bitlength, ENDIAN_BIG)

Script source

The Custom Element

Classes +
getRootNode()
getStructureByName(String name)
getStructureByindex(int index)
getStructureCount()
setName(String name)
getName()

GrammarManager

¥ LogSrc
logMessage(String module, int
logMessageForced(String module, int
logMessageHighlight(String module,

» NumberElement

» NumberValue

» Result

logMessageForced
Parameters:
String mocule

int messagelD

LOG_SEVERITY severity

Method details

The script that implements the logic of a custom element is edited in the script editor. In the
custom element you only select which script should be used so the code doesn't have to be copied.
(You also don't like redundancy, right?)

There are two tasks every structure element has to perform, be it a number, string or custom
element:

1. Parse data from a file and create a representation that can be displayed on screen
2. Translate an edited value back to file

The following two script functions should be implemented accordingly (Python syntax):

def parseByteRange(el enent,

byt eVi ew, bit Pos,
par seByt eRange net hod"""

bitLength, results):

def fillByteRange(val ue, byteArray,
"""fill Byt eRange nethod"""

bi t Pos, bitLength):

Please check out http:/ /synalysis.net/scripts.html to find illustrated samples.

17

http://synalysis.net/scripts.html

Scripting

Generic Scripts

There may be scripts you want to run comfortably via the Script menu that are not related to
grammars or other files. Generic scripts don'timplement a certain script function, the whole code
is executed once you run them.

Grammar Scripts

While you can create grammars in the grammar editor and add elements via the hex editor there
are cases where scripts make your life much easier.

Grammar scripts are intended for mainly three tasks:

e Create or extend a grammar from an external source, for example an XML or .h header file
* Modify a grammar

e Export a grammar to some other representation

In Synalyze It! Pro there's already an export to .dot GraphViz files built-in however with scripts
only your programming skills are the limit ;-)

Grammar scripts can contain three method but only the pr ocessGr ammar (gr anmar) method
is required (Python syntax).
def init():

print "init"

def processG ammar (granmar):
print "granmar"

def ternminate():
print "term nate"

File Scripts

Laziness is one of the main incitements that motivates people to automize work with their com-
puters. Since you're a computer expert you probably don't want to perform tedious tasks when
editing a file — be it binary or text.

File scripts allow you to create or manipulate files in any possible way. The

processByt eArray(byt eArray) method must be implemented, init() and term-
nat e() are optional.

def init():
print "init"

def processByteArray(byteArray):
print "byteArray"

def term nate():

18

http://www.graphviz.org

Scripting

print "term nate"

On http:/ /synalysis.net/ scripts.html you see how a file script can be implemented.

Result Processing Scripts

Now if you created your grammar and can see the beautiful tree that shows all the structures
and elements of your files, what comes next?

In Synalyze It! Pro you can export the whole tree as an XML or text file but your own script could
do so much more!

An obvious application is an export to C structures as shown on http://synalysis.net/
scripts.html however I'm sure there are many other use cases.

There are three methods you can implement. init() is called first, then
processResul t (resul t) for every single result, finally t er mi nat e() can be used to clean

up.
def init():
print "hello init"

def processResult(result):
print "hello result"

type = result.getType()

if type == RESULT_STRUCTURE_START_TYPE:
print("Structure Start")
el se:

print("other")

| evel = result.getLevel ()
print (level)

def termnate():
print "hello term nate"

Selection Scripts

Often it's useful to process a script only on the bytes selected in the hex editor. Selection scripts
are only available if there is a selection.

The pr ocessByt eRange(byt eVi ew, byteArray, bytePos, bytelLength) method is
mandatory.

def processByteRange(byteView, byteArray, bytePos, bytelLength):
print "process byte range here..."

19

http://synalysis.net/scripts.html
http://synalysis.net/scripts.html
http://synalysis.net/scripts.html

p RO

Scripting

On http:/ /synalysis.net/scripts.html you see how a selection script can be implemented.

20

http://synalysis.net/scripts.html

Chapter 6. How Do I...

I feel very adventurous.
There are so many doors to be opened, and I'm not afraid to look behind them.
—Elizabeth Taylor
Even if you have some experience in binary file formats it may not be obvious how to translate

this to grammars in Synalyze It!

This chapter will cover common cases and questions asked by users. Feel free to contact me in
case you miss something here.

Structure Inheritance

In many file formats like PNG there are structures that comprise equal as well as differing ele-
ments (see also inheritance in the glossary). In Synalyze It! grammars you first create the parent
structure with all similar elements. This structure and its child structures must be separate from
the main structure that encloses the whole file.

Figure 6.1. Example of inherited structures (PNG chunks)

Chunk
=

Length (integer)

<
2

must match = YES Type (string)
N

<
Z

Data (structure)

inherits/ > S inherits/
extends CRC (integer) extends
PLTE Chunk gAMA Chunk
s 2 s N
Length Length
4 N 4
4 N y N
Type = "PLTE" Type = "gAMA"
N 4 N
s S s
Data Data

[gAMAelements J
N
Y

/|
<

CRC
N—

CRC
—

21

http://en.wikipedia.org/wiki/Elizabeth_Taylor
mailto:andreas@synalysis.net
http://en.wikipedia.org/wiki/Portable_Network_Graphics

How Do ...

Figure 6.2. Screenshot of inherited Chunk structure

| Element Type
& Defaults ‘il Name: |IHDR
» & Header Defaults
¥ @ Chunk Defaults Extends: | Chunk 3
= Length Number
= Type Number Consists of: | <nonex 3
& Data
&= CRC Binary Length: T Bytes ™ derived
Alignment: 0 | M derived
= Length Number
= Type Number Element order: Fixed ¢ | ™ derived
> @ Data Data Repeat: | <none> +
= CRC Binary
v @ UME Chunk min: 1 = [derived
= Length Number
 Type Number max: 1 = [V derived
F & Data Data Stroke Color: ™ derived
= CRC Binary =
b @ Chunk Fill Color: ™ derived
L =F1p] Chunk
> & iTX Chunk Elerent Defaults
> @ iccP Chunk
» & IRNS Chunk Endianness: | Big : ™ derived
& gAMA Chunk Signed: | No = [derived
F & cHRM Chunk
> @ PLTE Chunk Encoding: | ISO_8859-1:1987 ¢ ™ derived
» & hisT Chunk
» & bKGD Chunk
» & pHYs Chunk
» & sPLT Chunk
== o) Debug @]derived

Match the right Structure

In the section above you learned how to design structures with minimal effort. The next ques-
tion is how to select the right structure automatically. The chunk structures in figure Figure 6.1,
“Example of inherited structures (PNG chunks)” are already prepared for automatic selection by
the Synalyze It! parser. The type element of the PLTE and gAMA chunk structures contain one
so-called fixed value that must be present in the file at a certain file position. The must-match flag
is derived from the parent structure.

Figure 6.3. Example of automatically matched structures

gAMA Chunk

Chunks [element order = variable] —_—

gAMA Chunk Length]
Reference [min repeat count = 0] Type = "gAMA"
PLTE Chunk —pp-PLTE Chunk
Reference [min repeat count = 0] Length Data
— en
e ——— gAMA elements
Type = "PLTE" P
CRC
Data N —eee’
... Chunk
Reference
—
CRC
-

The automatic structure mapping can be compared to switch/case constructs in programming
languages. There must be a criteria that determines which structure to apply. This criteria lies in

22

How Do I...

the elements of the structures themselves, the must-match flag lets structures only be mapped if
any of the specified fixed values is found in the file.

Figure 6.4. Screenshot of Chunks structure

E_Iemen!______ Type
¥ @ Chunk Defaults (o] Name: | Chunks
= Length Number
= Type Number Extends: | <none>
@ Data) Consists of: | Chunk 3]
&= CRC Binary
» & IHDR Chunk Length: | v | Bytes derived
» & tUME Chunk fi T =
» @1 Chunk Alignment: |0 v | [derived
> _ZTXI Chunk Element order: | Variable +| [l derived
L= R1p. Chunk
» @ iCCP Chunk Repeat: | <none> ol
> & NS Chunk r T
b © gAMA Chunk min: |1 v derived
» @ cHRM Chunk max: |unlimited [*] derived
» & PLTE Chunk
» @ hisT Chunk Stroke Color: [gderived
> @ bicD Chunk Fill Color: [™ derived
» & pHYs Chunk
> @ sPLr Chunk Element Defaults
> & sRGB Chunk
» @ IDAT Chunk .

i B 5 d d
> © BT Chunk Endianness: | Big [derive
» & IEND Chunk Signed: | Mo = [2] derived
¥ @ PNG File Defaults =

= Header Structure Reference Encoding: | 150 8859-1.1987 : E derived
= |[HDR Structure Reference
= 1IME Structure Reference
= ICCP Structure Reference
== o) Debug ™ derived

23

Chapter 7. Support

I'm so lucky. I have such a great support system. All T have to do is run.
—Cathy Freeman
If you still face problems after reading this manual, there are different ways to ask for help.
Fogbugz allows to enter issues directly into the Synalyze It! issue tracking system.
Emails can be sent to <andr eas@ynal ysi s. net > or via the web form on synalysis.net.

I'm open for any feature requests or any other suggestions, please send a note to
<i deas@ynal ysi s. net > to help improve the application.

Thanks for using Synalyze It! We look forward to hearing from you :-)

Tip

For further information about Synalyze It! visit http:/ / www.synalysis.net

24

http://en.wikipedia.org/wiki/Cathy_Freeman
https://synalysis.fogbugz.com/default.asp?pg=pgPublicEdit
mailto:andreas@synalysis.net
http://www.synalysis.net/contact-me.html
mailto:ideas@synalysis.net
http://www.synalysis.net

Chapter 8. Reverse Engineering

The hidden harmony is better than the obvious.
—Pablo Picasso

The term reverse engineering connotes usually something forbidden that only hackers do. How-
ever there are situations where reverse engineering is totally legal, fun and useful.

Let's assume there is a file you're interested in and you don't know much about its format. The
first step you can do is to look at the histogram and check if there are bytes that are more frequent
than others. Often those bytes play a special role in the file format. Zero bytes for example are
often used to end strings or to fill the unused space of elements.

Figure 8.1. Create a grammar from the file to be analyzed

w jer.gif

¥ <none>

& Fopropsopeopeoro-coocoooo CE

G CE 95 958 CB 65 95 95 93 95 9¢

=

To start creating an own grammar for your file format you simply click "Create grammar..." in
the grammar selection toolbar item. By this a new grammar document is created that contains
already information about file extension and / or type of the file to be analyzed.

If you are in the fortunate position that you have some control over the generation of the file,
you can try to save the file with little changes. For example, if the file is a saved score of some
game, produce files with as little difference as possible. In many cases this will lead you to the
relevant bytes and fields. Often it's easy to map the data you know from the generating program
to the bytes in the file. With this approach you try to work from the inside out. First you identify
single data elements, then the structures around them.

The alternative way is to find repeating patterns in the file that correspond with the record struc-
ture of the file. Sometimes it helps to scroll quickly though the file and let the eye detect sections
of different content in the file. The next step is to search for bytes that could hold the lengths or
file offsets of those sections.

Figure 8.2. A sample record

16 Bit 16 Bit
Length Record Type

To let Synalyze It! parse the file it's necessary to learn incrementally how the file is constructed.
Sometimes you'll find some hints in newsgroups, however even without prior knowledge there
are chances to analyze formerly completely unknown file formats. You should be aware of com-
mon ways how binary file formats are built. In many cases you'll see a hierarchical structure that
consists of elements called records or chunks. Those records often contain a field that holds the

25

http://en.wikipedia.org/wiki/Pablo_Picasso

Reverse Engineering

length of the record and an identifier that tells the reading program which type of record is to
be read.

When you search for certain lengths or file offsets in the file you definitely have to understand
that the bytes can occur in reverse order. See also the explanation of endianness in the glossary.

26

Chapter 9. Expressions

There are different places where you can use expressions instead of single numbers. The expres-
sion parsing uses primarily the ExprEval library (license).

One of the few modifications to the original expression parsing library is that expressions don't

need to be ended with a semicolon in Synalyze It!. Additionally hex numbers are accepted if
they are prefixed with Ox.

Lengths of structure elements

Structure, string and binary element lengths in the grammar can be computed by an expression.
The lengths of structures allow to contain the name of number variables that are inside the struc-
ture so the expression is computed when all needed variables are read.

Figure 9.1. Length expression

Length: pow(NumberOfCLUTGridPoints, | 7]

Alignment: 0 E]
lement order: | Fixed 5]
Repeat Counts

The repeat counts of structures and structure elements can comprise expressions including vari-
ables parsed before the structure or element.

Figure 9.2. Repeat count expression

Repeat: | <none>

A4 F
e

min: |1

&) &

mmax: . 5+16*channels

Data Panel

Normally you use the data panel to quickly see decimal values for the bytes in a file. However,
not only can you enter new values but even expressions that are resolved to the correct byte

representation in the file.

27

http://expreval.sourceforge.net/
http://expreval.svn.sourceforge.net/viewvc/expreval/tags/3_1/docs/license.txt?revision=17

Expressions

Figure 9.3. Data Panel

@4 12 @@ @8 @2 @2 02 @1 92 @2 @@ @3 FE FD FC FB FA FO F8 F7 FF FE F
FE FD[14] FB FA F2 F8 F7 FF FE FD FC FB FA F9 F8 F7 FF FE FD FC FB F
FB FA F9 F8 F7 FF FE FD FC FB FA F9 F8 F7 FF FE FD FC FB FA F9 F8 F

[EiNeNs _ ClutTestFile

Type Value

44|

8 bit Signed Integer 20

|16 bit Unsigned Integer 5371

16 bit Signed Integer 5371

|32 bit Unsigned Integer 352058105

32 bit Signed Integer 352058105
|54 bit Unsigned Integer 1512078051443736574
64 bit Signed Integer 1512078051443736574
32 bit Float 0.000000

64 bit Float 0.000000
|24 bit RGB 14FBFA
|32 bit VK

| Big Endian =] [l Use only selected data

Jump to File Offset

The jump to file offset entry field in the toolbar is handy when you frequently jump to new file

S KC

offsets. You can enter there simple hex or decimal numbers as well as expressions.

Figure 9.4. Go to position with expression

eanon

15*3-12|
GCo To Position
2x0000 23 24 10 20 23 20 272 @

@x@R1E FF FE FD[FC]FB FA F9 F
@x@@3C FC FB FA F9 FB F7 FF F

Expression Syntax

Expressions have pretty much the same syntax as they would have on paper, with the following
exception:

* The asterisk "™ must be used to multiply. Examples:
* 5%6 Valid
o (x+1)*(x-1) Valid
o (x+1)(x-1) Invalid

Some functions may take reference parameters. These parameters are references to other vari-
ables. You can mix reference parameters with normal parameters. The order of the normal para-

28

Expressions

meters must remain the same and the order of the reference parameters must remain the same.
Examples:

e min(1,2,3,4,&mval); &moal is a reference to a variable mval

e min(1,2,&mval,3,4); You may mix them inside like this.

e min(1,2,(&mval),3,4); You may not nest reference parameters in any way
Expressions may also be nested with parenthesis. Examples:

o sin(x-cos(5+max(4,5,6*x)));

® 6+(5-2*(x+y));

If a variable is used in an expression, but that variable does not exist, it is considered zero. If it
does exist then its value is used instead.

Notice: An expression can NOT assign to a constant and an expression can NOT use a constant
as a reference parameter.

Order of operators

The order of operators are processed correctly in ExprEval. The parameters to functions may be
evaluated out of order, depending on the function itself.

The following illustrates the order of operators:

Operator Direction Example
Functions and Parenthesis N/A (x +5) *sin(d)
Negation Right to Left y=-2
Exponents Left to Right y=x"2
Multiplication and Division |Left to Right x*5/y
Addition and Subtraction Left to Right 4+5-3
Assignment Right to Left x=y=z=0

Internal Functions

The following functions are provided with ExprEval:

Function Min. Max. Min. Max. Result/Comment
Args Args Ref Args |Ref Args

abs(v) 1 1 0 0 Absolute value of v. abs(-4.3) re-
turns 4.3

mod(v,d) 2 2 0 0 Remainder of v/d. mod(5.2,2.5)
return 0.2

ipart(v) 1 1 0 0 The integer part of v. ipart(3.2)
returns 3

fpart(v) 1 1 0 0 The fractional part of v.
fpart(3.2) returns 0.2

min(y,...) 1 None 0 0 The minimum number passed.
min(3,2,-5,-2,7) returns -5

29

Expressions

Function Min. Max. Min. Max. Result/Comment
Args Args Ref Args |Ref Args

max(v,...) 1 None 0 0 The maximum number passed.
max(3,2,-5,-2,7) returns 7

pow(a,b) 2 2 0 0 The value a raised to the power
b. pow(3.2,1.7) returns 3217

sqrt(a) 1 1 0 0 The square root of a. sqrt(16) re-
turns 4

sin(a) 1 1 0 0 The sine of a radians. sin(1.5) re-
turns around 0.997

sinh(a) 1 1 0 0 The hyperbolic sine of a.
sinh(1.5) returns around 2.129

asin(a) 1 1 0 0 The arc-sine of a in radians.
asin(0.5) returns around 0.524

cos(a) 1 1 0 0 The cosine of a radians. cos(1.5)
returns around 0.0707

cosh(a) 1 1 0 0 The hyperbolic cosine of a.
cosh(1.5) returns around 2.352

acos(a) 1 1 0 0 The arc-cosine of a in radians.
acos(0.5) returns around 1.047

tan(a) 1 1 0 0 The tangent of a radians.
tan(1.5) returns around 14.101

tanh(a) 1 1 0 0 The hyperbolic tangent of a.
tanh(1.5) returns around 0.905

atan(a) 1 1 0 0 The arc-tangent of a in radians.
atan(0.3) returns about 0.291

atan2(y,x) 2 2 0 0 The arc-tangent of y/x, with
quadrant correction. atan2(4,3)
returns about 0.927

log(a) 1 1 0 0 The base 10 logarithm of a.
log(100) returns 2

pow10(a) 1 1 0 0 10 raised to the power of a.
pow10(2) returns 100

In(a) 1 1 0 0 The base e logarithm of a. In(2.8)
returns around 1.030

exp(a) 1 1 0 0 e raised to the power of a. exp(2)
returns around 7.389

logn(a,b) 2 2 0 0 The base b logarithm of a.
logn(16,2) returns 4

ceil(a) 1 1 0 0 Rounds a up to the nearest inte-
ger. ceil(3.2) returns 4

floor(a) 1 1 0 0 Rounds a down to the nearest
integer. floor(3.2) returns 3

rand(&seed) 0 0 1 1 Returns a number between 0 up
to but not including 1.

30

Expressions

Function

Min.
Args

Max.
Args

Min.
Ref Args

Max.
Ref Args

Result/Comment

random(a,b,&seed)

1

Returns a number between a up
to and including b.

randomize(&seed)

Seed the random number gen-
erator with a value based on the
current time. Return value is un-
known

deg(a)

Returns a radians converted
to degrees. deg(3.14) returns
around 179.909

rad(a)

Returns a degrees converted to
radians. rad(180) returns around
3.142

recttopolr(x,y)

Returns the polar radius of the
rectangular co-ordinates. rect-
topolr(2,3) returns around 3.606

recttopola(x,y)

Returns the polar angle (0...2PI)
in radians of the rectangular co-
ordinates. recttopola(2,3) returns
around 0.588

poltorectx(r,a)

Returns the x rectangular co-or-
dinate of the polar co-ordinates.
poltorectx(3,1.5) returns around
0.212

poltorecty(r,a)

Returns the y rectangular co-or-
dinate of the polar co-ordinates.
poltorecty(3,1.5) returns around
2.992

if(c,t,f)

Evaluates and returns t if ¢ is not
0.0. Else evaluates and returns f.
if(0.1,2.1,3.9) returns 2.1

select(c,n,z[,p])

Returns n if ¢ is less than 0.0. Re-
turns z if ¢ is 0.0. If c is greater
than 0.0 and only three argu-
ments were passed, returns z. If
c is greater than 0.0 and four ar-
guments were passed, return p.
select(3,1,4,5) returns 5

equal(a,b)

Returns 1.0 if a is equal to b. Else
returns 0.0 equal(3,2) returns 0.0

above(a,b)

Returns 1.0 if a is above b. Else
returns 0.0 above(3,2) returns 1.0

below(a,b)

Returns 1.0 if a is below b. Else
returns 0.0 below(3,2) returns 0.0

avg(a,...)

None

Returns the average of the val-
ues passed. avg(3,3,6) returns 4

31

Expressions

Function

Min.
Args

Max.
Args

Min.
Ref Args

Max.
Ref Args

Result/Comment

clip(v,;min,max)

0

Clips v to the range from min

to max. If v is less than min, it
returns min. If v is greater than
max it returns max. Otherwise it
returns v. clip(3,1,2) returns 2

clamp(v,min,max)

Clamps v to the range from
min to max, looping if needed.
clamp(8.2,1.3,4.7) returns 1.4

pntchange(sidelold,
side2o0ld, sidelnew,
side2new, oldpnt)

This is used to translate points
from different scale. It works no
matter the orientation as long
as the sides are lined up cor-
rectly. pntchange(-1,1,0,480,-0.5)
returns 120 (x example)
pntchange(-1,1,480,0,-0.5) re-
turns 360 (y example)

poly(x,cl,...)

None

This function calculates the
polynomial. x is the value to use
in the polynomial. c¢1 and on are
the coefficients. poly(4,6,9,3,1,4)
returns 2168 same as 6*4* + 9*4°
+3*4% + 1*4! + 4740

and(a,b)

Returns 0.0 if either a or b are
0.0 Else returns 1.0 and(2.1,0.0)
returns 0.0

or(a,b)

Returns 0.0 if both a and b are
0.0 Else returns 1.0 or(2.1,0.0) re-
turns 1.0

not(a)

Returns 1.0 if a is 0.0 Else re-
turns 0.0 not(0.3) returns 0.0

for(init,test,inc,al,...)

None

This function acts like a for loop
in C. First init is evaluated. Then
test is evaluated. As long as the
test is not 0.0, the action state-
ments (al to an) are evaluat-

ed, the inc statement is evalu-
ated, and the test is evaluated
again. The result is the result

of the final action statement.
for(x=0,below(x,11),x=x+1,y=y
+x) returns 55.0 (if y was initial-
ly 0.0)

many(expr,...)

None

This function treats many
subexpressions as a sin-

gle object (function). It is

mainly for the 'for' function.
for(many(j=5,k=1),above(j*k,0.00]

+5,k=k/2),0)

32

) many (j=j

Expressions

Internal Constants

The following constants are provided with ExprEval:

Constant Math Form Value

M_E e 2.7182818284590452354
M_LOG2E logy(e) 1.4426950408889634074
M_LOGI0E logio(e) 0.43429448190325182765
M_LN2 In(2) 0.69314718055994530942
M_LN10 In(10) 2.30258509299404568402
M_PI i 3.14159265358979323846
M_PI_2 /2 1.57079632679489661923
M_PI_4 /4 0.78539816339744830962
M_1_PI 1/m 0.31830988618379067154
M_2_PI 2/m 0.63661977236758134308
M_1_SQRTPI 1/V(m) 0.56418958354776
M_2_SQRTPI 2/V(m) 1.12837916709551257390
M_SQRT2 v(2) 1.41421356237309504880
M_1_SQRT?2 1/v(2) 0.70710678118654752440

33

Chapter 10. Scripting Reference

This chapter contains all classes and methods you can use in the scripting functions. If you feel
there's something missing, please contact me.

Class ByteArray

A byte array object represents mostly a larger memory chunk. The actual storage is handled by
ByteStorage objects.

Methods of Byt eAr r ay:
| ong getLength();

get length

del et eRange(| ong position,
I ong | ength);

Delete range in byte array.

Parameters:
position Position where to delete
 ength Number of bytes to delete

fill Range(l ong position,
[ong | ength,
byte[] fillBytes);

Fill range in byte array.

Parameters:
posi tion Position where to delete
 engt h Number of bytes to delete

fillBytes Anarray of bytes to fill in range

wri teSi gnedl nt (1 ong position,
[ong | ength,
ENDI AN_TYPE endi anType) ;

Write signed integer to byte array.

Parameters:

position Position where to write (bytes)

34

mailto:feedback@synalysis.net

Scripting Reference

Parameters:
 ength Number of bytes to write

endi anType Endianness of number to write

writeSi gnedlntBits(long position,
[ong | ength,
ENDI AN_TYPE endi anType) ;

Write signed integer to byte array (on bit level)

Parameters:
position Position where to write (bits)
[ength Number of bits to write

endi anType Endianness of number to write

writ eUnsi gnedl nt (I ong position,
| ong | engt h,
ENDI AN_TYPE endi anType) ;

Write unsigned integer to byte array.

Parameters:
position Position where to write
 ength Number of bytes to write

endi anType Endianness of number to write

wri t eUnsi gnedl ntBi ts(l ong position,
[ong | ength,
ENDI AN_TYPE endi anType) ;

Write unsigned integer to byte array (on bit level)

Parameters:
position Position where to write (bits)
| ength Number of bits to write

endi anType Endianness of number to write

i nsertByte(l ong position,
char byte);

Insert byte into byte array.

35

Scripting Reference

Parameters:
position Position where to insert
byt e The byte to insert

repl aceByte(l ong position,
char byte);

Replace byte in byte array.

Parameters:
position Position where to replace
byt e The byte to replace

Class ByteView
A byte view object is a proxy to a
Methods of Byt eVi ew:
| ong getLength();

Get length of byte view.

byte readByte(l ong position);

Read byte from byte view (position in bytes)

Parameters:

posi tion Position where to read the byte

i nt readSi gnedl nt(long position,
int Iength,
ENDI AN_TYPE endi anType) ;

Read signed integer from byte view.

Parameters:
position Position where to read the number
| engt h Length of the number in bytes

endi anType Little/big endian

36

Scripting Reference

ui nt readUnsi gnedl nt (I ong position,
int length,
ENDI AN_TYPE endi anType) ;

Read unsigned integer from byte view.

Parameters:
position Position where to read the number
I ength Length of the number in bytes

endi anType Little/big endian

String readString(l ong position,
int length,
String encoding);

Read string from byte view.

Parameters:
position Position where to read the string
| engt h Length of the string in bytes
encodi ng Encoding of the string

Class Element

An element object represents one item in a structure.
Methods of El enent :
El ement El enent (ELEMENT_TYPE type,
String nane,
BOOL setDefaul ts);

Constructor. Create object of type Element.

Parameters:
type The type of the element
nane The name of the element

set Def aul t s Set defaults for element?

String get Nane();

Get name. Get name of element.

37

Scripting Reference

set Name(String nane);

Set name. Set name of element.

Parameters:

name The new name of the element

String getDescription();

Get description. Get description of element.

set Description(String nane);

Set description. Set description of element.

Parameters:

nane The new description of the element

String getEncl osingStructure();

Get enclosing structure. Get the enclosing structure of the element.

String getlLength();

Get length. Get length of element. For binary or string elements a length of zero means to fill the
enclosing structure. Be aware that lengths can be fractions of bytes so call additionally getLength-
Unit()

LENGTH UNI' T get Lengt hUnit ();

Get length unit. Get length unit of element in bits. Valid values are.

setLength(String | ength,
LENGTH UNIT Il engthUnit);

Set length. Set length of element. For binary or string elements a length of zero means to fill the
enclosing structure. The length can contain variables and expressions. For number and binary
elements you can specify a length unit .

Parameters:

| engt h The new length of the element

38

Scripting Reference

Parameters:

| engt hUnit The new length unit (bits/bytes) of the element

ELEMENT_TYPE get Type();

Get type. Get type of element. This can be one of.

BOOL nust Mat ch();

Get "must match" flag. Get if this element has to match while parsing a file. For this check the
min/max values are checked and if one of the fixed values matches (if at least one is defined)

set Must Mat ch(BOOL mnust Mat ch) ;

Set "must match" flag. Set if this element has to match while parsing a file. For this check the
min/max values are checked and if one of the fixed values matches (if at least one is defined)

Val ue get M nVal ue();

Get minimum value. Get minimum value of element. This is only valid for numbers. This value
will be checked if the "must match" flag is set.

El enent get Parent();

Get parent. Get parent of element. There is only a parent element if the enclosing structure is
inherited from another structure.

Class Grammar
A grammar with all structures and their elements
Methods of Gr anmar :
String get Encodi ng();

Get encoding.

String getDescription();

Get grammar description.

39

Scripting Reference

set Description(String description);

Set grammar description.

Parameters:

descri pti on The description of the grammar

voi d addStructure(Structure structure);

Add structure.

Parameters:

structure The structure to be appended

void insertStructureAtlndex(Structure structure,
i nt index);

Insert structure at index.

Parameters:
structure The structure to be inserted

i ndex Index where structure should be inserted

voi d del eteStructureAtlndex(int index);

Delete structure at index.

Parameters:

i ndex Index where structure should be deleted

Structure get Root Node();

Get root node (structure)

void setStartStructure(Structure startStructure);

Set start structure.

Structure get StructureByName(String nane);

40

Scripting Reference

Get structure by name.

Parameters:

name Name of the structure to get

Structure get StructureByl ndex(int index);

Get structure by index.

Parameters:

i ndex Index of the structure to get

i nt getStructureCount();

Get number of structures.

set Nane(String nane);

Set grammar name.

Parameters:

nane The name of the grammar

String get Nane();

get grammar name

set UTI (String UTI);
Set UTI grammar is valid for.

Parameters:
uTl The UTI

String getUTl();

Get UTI grammar is valid for.

setFil eExtension(String fil eExtension);

41

Scripting Reference

Set file extension grammar is valid for.

Parameters:

fil eExt en- The file extension to be set
si on

String getFil eExtension();

Get file extension grammar is valid for.

Class GrammarManager

The

Methods of Gr anmar Manager :

Class LogSrc

A log source object allows to write log messages to a log target, e. g. the messages window.
Methods of LogSr c:

| ogMessage(Stri ng nodul e,
i nt messagel D,
LOG SEVERI TY severity,
String nessage);

Write a log message.

Parameters:

modul e A domain of message IDs. Can be any string that lets you iden-
tify your messages

messagel D AnID to identify the message
severity Severity of the message
nessage The actual message

| ogMessageFor ced(String nodul e,
i nt nessagel D,
LOG SEVERI TY severity,
String nessage);

Write a log message. It will be displayed no matter which severity is specified.

Parameters:

modul e A domain of message IDs. Can be any string that lets you iden-
tify your messages

42

Scripting Reference

Parameters:
messagel D An D to identify the message
severity Severity of the message
message The actual message

| ogMessageHi ghl i ght (Stri ng nodul e,
i nt messagel D,
LOG SEVERI TY severity,
String nessage);

Write a log message. The first message written with this method will be selected.

Parameters:

modul e A domain of message IDs. Can be any string that lets you iden-
tify your messages

messagel D An ID to identify the message
severity Severity of the message
message The actual message

Class NumberElement

A number element object represents one number item in a structure.
Methods of Nunber El enent :
NUVBER DI SPLAY_TYPE get Nunmber Di spl ayType();

Get number display Get number display type. This determines how a number is displayed in
Synalyze It! and can be one of.

NUVBER_TYPE get Number Type() ;

Get number type. Get number type of number element. This can be one of.

ENDI AN_TYPE get Endi anness() ;

Get endianness Get endianness of number element.

BOOL i sSigned();

Is number element of type signed? Query if the number element parses a signed or an unsigned
value.

43

Scripting Reference

Class NumberValue

Methods of Nunber Val ue:
ul ong get Unsi gned();

Get unsigned number. Get an unsigned integer from the value. Some implicit conversions are
implemented.

voi d set Unsi gned(ul ong nunber);

Set unsigned number. Set an unsigned integer in the value.

Parameters:

nunber The unsigned number to be set

| ong get Si gned();

Get signed number. Get a nsigned integer from the value. Some implicit conversions are imple-
mented.

voi d set Si gned(l ong nunber);

Set signed number. Set a signed integer in the value.

Parameters:

nunber The signed number to be set

ul ong get Fl oat ();

Get floating-point number. Get a floating-point number from the value. Some implicit conver-
sions are implemented.

voi d set Fl oat (doubl e nunber);

Set floating-point number. Set a floating-point number in the value.

Parameters:

nunber The number to be set

44

Scripting Reference

Class Result

objects are created during the structure mapping process. Depending on their type they refer to
a structure or struct element and a value.

Methods of Resul t :
Val ue get Val ue();

Get value. Each result has a value and refers to a structure element.

i nt getLevel ();

Get level. Returns the level of a result in the results tree.

int getlteration();

Get iteration. Returns the interation of a result in a sequence of repeated elements.

int getStartBytePos();

Get start (byte). Returns the byte position of the result in the input file.

int getStartBitPos();

Get start (bit). Returns the bit position of the result in the input file.

int getBytelLength();

Get length (bytes). Returns the byte length of the result in the input file.

int getBitLength();

Get length (bits). Returns the bit length of the result in the input file.

int getName();

Get name. Returns the name of the result.

45

Scripting Reference

Structure getStructure();

Get structure. Returns the structure of the result. This is only valid if the result ist of type struc-
ture.

El enent get El emrent () ;

Get structure element. Returns the structure elementof the result. This is only valid if the result
ist of type structure.

Class Results

A results object contains the results of the structure mapping process
Methods of Resul t s:

Result addStructureStart(Structure structure,
| ong start Pos,
int iteration,
String nane,
bool addSi zeToEncl osi ng);

Add start of a structure to the results. The returned result can be used to remove all results from
this on using the cut method. This method is used usually when the structure is enclosed in
another structure.

Parameters:

structure The structure that was mapped

start Pos Where in the file was the structure mapped?

iteration How often was this structure mapped consecutively? (Array of
structures)

nane Name to show for the result

addSi ze- Add size to the enclosing structure result? Set this to true if the

ToEncl osi ng structure is actually contained in the enclosing structure in the
result tree.

Result addStructureStart At Position(Structure structure,
| ong start Pos,
int iteration,
String nane);

Add start of a structure to the results. The returned result can be used to remove all results from
this on using the cut method. This method is used usually when the structure is referenced from
another position and not enclosed in another structure.

46

Scripting Reference

Parameters:

structure The structure that was mapped

start Pos Where in the file was the structure mapped?

iteration How often was this structure mapped consecutively? (Array of
structures)

nane Name to show for the result

Resul t addStructureEnd(l ong endPos);

Add end of a structure to the results. The returned result can be used to remove all results from
this on using the cut method.

Parameters:

endPos Where in the file did the structure end? Padding bytes are cal-
culated automatically

Result addEl enent (El enment el enment,
[ong | ength,
int iteration,
Val ue val ue);

Add a structure element to the results. Length is specified in bytes. The returned result can be
used to remove all results from this on using the cut method.

Parameters:
el ement The structure element that was mapped
| ength Length of the element in bytes

iteration How often was this structure element mapped consecutively?
(Array of structures)

val ue The value resulting of the element being mapped to the file

Result addEl enent Bi t s(El ement el erment,
[ong | ength,
int iteration,
Val ue val ue);

Add a structure element to the results. Length is specified in bits. The returned result can be used
to remove all results from this on using the cut method.

Parameters:
el ement The structure element that was mapped
I ength Length of the element in bits

iteration How often was this structure element mapped consecutively?
(Array of structures)

47

Scripting Reference

Parameters:

val ue The value resulting of the element being mapped to the file

cut(Result result);

Cut results. You usually do this when you parsed in a wrong way and need to reparse from a
certain position. So save a reference to the result where you may want to restart.

Parameters:

resul t First result

Result getlLastResult();

Get last result. This is the result that was added most recently.

Result getPrevResult(Result result);

Get previous result. Pass here the successor of the result you want.

Parameters:

resul t The result you want the predecessor for

Result get Resul t ByNane(String nane);

Get result by name. The search starts at the end.

Parameters:

name Name of the result you're looking for

Class String

The

Methods of St ri ng:
Class StringElement

A string element object represents one binary item in a structure.
Methods of St ri ngEl enent :

String get Encodi ng();

48

Scripting Reference

Get encoding. Get encoding of string element.

set Encodi ng(Stri ng encodi ng);

Set encoding. Set string encoding of element.

Parameters:

encodi ng The new string encoding of the element

i nt getBytesPer Char();

Get bytes per character. Get the number of bytes a character needs. This information is derived
from the selected string encoding.

STRI NG_LENGTH _TYPE get Lengt hType() ;

Get string length type. Get length type of string element. Valid types are:

Class StringValue

Methods of St ri ngVal ue:
String getString();

Get string. Get a string from the value.

setString(String string);

Set string. Set the string in a value object.

Parameters:

string The string to be set

Class Structure

A structure object represents a structure in a grammar.
Methods of St ruct ure:

set Alignnment (int alignnment);

49

Scripting Reference

Set alignment. The structure is placed at a multiple of the alignment value.

Parameters:

al ignment The alignment value

int getAlignnent();

Get alignment. The structure is placed at a multiple of the alignment value.

String getDescription();

Get structure description.

set Description(String description);

Set structure description.

Parameters:

descri pti on The description of the structure

Parameters:

descri pti on The default encoding

String get Nane();

Get name. Get name of structure.

set Name(String nane);

Set name. Set name of structure.

Parameters:

name The new name of the structure

set Di sabl ed(BOOL di sabl ed);

Disable/Enable structure for parsing.

Parameters:

di sabl ed Disable/enable the structure

50

Scripting Reference

set Length(String | ength,
LENGTH UNI' T [engt hUnit);

Set length of structure.

Parameters:
| engt h The new length of the structure
I engt hUnit The new length unit of the structure

set Repeat M n(String repeatMn);

Set minimum repeat count of structure.

Parameters:

repeat M n The new min repeat count of the structure

set Repeat Max(Stri ng repeat Max) ;

Set maximum repeat count of structure.

Parameters:

repeat Max The new max repeat count of the structure

i nt get El ement Count () ;

Get element count.

El enent get El ement Byl ndex(i nt index);

Get element by index.

El ement get El ement ByNanme(String nane);

Get element by name.

set Def aul t Encodi ng(String def aul t Encodi ng);

Set default encoding. The default encoding will be used for all strings that don't specify the
encoding explicitely.

51

Scripting Reference

Parameters:

defaul t - The default encoding
Encodi ng

String getDef aul t Encodi ng();

Get default encoding. The default encoding will be used for all strings that don't specify the
encoding explicitely.

set El enent Or der (ORDER_TYPE or der);

Set element order. Variable order selects one matching element. Fixed order maps all elements
consecutively.

Parameters:

or der The element order in the structure

i nt appendEl enent (El enent * el enent);

Append element.

Parameters:

el enent The element to be appended

voi d insertEl ement At | ndex(El enent * el enent,

int index);
Insert element at certain index.
Parameters:
el ement The element to be inserted
i ndex The index where to insert

voi d del et eEl enent At | ndex(i nt index);

Delete element at index.

Parameters:

i ndex The index where to delete

52

Scripting Reference

Class StructureElement

A structure element object represents one structure item inside another structure.
Methods of St ruct ur eEl errent :
Structure getStructure();

Get structure. Get structure of element. This is only valid for elements of type
ELEMENT_STRUCTURE.

Class StructureMapper

A structure mapper object maps the structures of a grammar to a file (
Methods of St r uct ur eMapper :
l ong mapStructure(Structure structure);

Map a structure at the current position to a file. The length of the structure is added in the results
to the enclosing structure.

Parameters:

structure The structure to apply

| ong mapStructureAt Position(Structure structure,
| ong position,
| ong size);

Map a structure at the given position to a file. The length of the structure is not added in the
results to the enclosing structure.

Parameters:
structure The structure to apply
position Where to apply the structure

si ze Maximum space the structure can consume

| ong mapEl enent Wt hSi ze(El enent el enent,
int maxSi ze);

Map an element at the current position to a file. The maximum length the element may take is
also passed.

Parameters:
el ement The element to be applied
maxSi ze The maximum size the element may have

53

Scripting Reference

| ong set Dynam cEndi anness(ENDI AN_TYPE endi anness);

Set dynamic endianness. This endianness will be used by structure elements having set their
endianness to dynamic.

Parameters:

endi anness The endianness to use from now on

ENDI AN_TYPE get Dynani cEndi anness() ;

Get dynamic endianness. This endianness is by structure elements having set their endianness
to dynamic.

Byt eArray getCurrentByteArray();

Current byte array being processed.

Byt eVi ew get Current Byt eVi ew() ;

Current byte view being processed.

Structure getCurrent Gamar () ;

Current grammar being processed.

LogSrc get Current LogSrc();

Current log source used for output.

Resul ts get Current Resul ts();

Current results used while mapping structures.

Structure getCurrentStructure();

Current structure being mapped.

54

Scripting Reference

El ement get Current El enent () ;

Current structure element being mapped. This is of course the scripting element...

long getCurrent O fset();

Current file offset of the mapping operation.

voi d setCurrent O f set (unsi gned | ong of fset);

Set current file offset of the mapping operation.

Parameters:

of f set New offset to continue processing after script

| ong get Current Rerai ni ngSi ze() ;

Current remaining size of the mapping operation.

Class Value

A
Methods of Val ue:
String get Name();

Get name. Get name of value.

set Nane(String nane);

Set name. Set name of value.

Parameters:

nane The alignment value

55

Glossary

Here you find some terms explained in the context of this manual.

E

Endianness

G

Grammar

When you develop in high-level languages like Java or C you often don't
notice that the variables you work with are stored in a different byte order
in memory, depending on the machine you work on. Only if you display a
memory dump of structures or variables you see that the bytes may appear
in a different order than what you expected. This reverse byte ordering is
called little endian. Big endian means that the bytes of a variable in memory
are ordered as if you write the value on paper. There are CPUs that can
work both in little and big endian mode but usually you'll find little endian
on PC architectures while big endian is found on platforms like AIX or
Solaris (SPARC).

As mentioned the endianness is normally hidden from the casual program-
mer however if you dump structures or variables directly to a file or trans-
mit them via a TCP connection, it does play a role. Many file format spec-
ifications explicitly define the endianness of the data fields. There are file
formats that allow as well big as little endian interpretation for the num-
ber elements. Synalyze It! supports such formats with a feature called dy-
namic endianness — a script can define for a certain file if the elements
marked with dynamic endianness should be interpreted as little or big en-
dian numbers.

Figure 23. Litte/big endian example

32-bit value: 305419896 (decimal) or 12345678 (hex)

Big Endian: 12 34 56 78

Little Endian 78 56 34 12

Grammar in the context of Synalyze It! means a definition of the structure
of a certain file format. Just as spoken languages also binary files must
follow a set of rules to be able to be understood - be it by humans or by
computers. The definition of a grammar for binary files allows to parse
them by the generic parser in Synalyze It!. Those grammars are stored on
disk in XML format.

56

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Little_endian#Little-endian
http://en.wikipedia.org/wiki/Big_endian
http://en.wikipedia.org/wiki/Formal_grammar
http://en.wikipedia.org/wiki/XML

Glossary

I

Inheritance

P

Pascal strings

T

Text encodings

The term inheritance is used in Synalyze It! as in object-oriented program-
ming languages. In record-oriented binary file formats you often find sim-
ilar records that start with the same elements like record length or an iden-
tifier that identifies the record. Defining a parent structure once that holds
the elements which are shared by all child structures saves time, avoids
mistakes and makes the grammar easier to understand.

There are different concepts in the various programming languages how
text strings are stored in memory. In C-based programming languages the
length of a string is only determined by a byte with value zero after the last
character while in Pascal the first byte contains the length of the following
characters. Accordingly you find in binary files both types of text string
representations plus such of fixed-length.

A good part of the information computers process is text. Since computers
only know how to handle and store numbers, characters have to be repre-
sented by numbers. In the early days of computers storage was expensive
so characters were assigned to as least bits as possible. ASCII is still the
code page most people know however the 7 bits are only enough to repre-
sent 128 characters, including control characters like line feed or carriage
return. To represent text in non-English languages, more code points were
needed so many 8-bit code pages exist that base on ASCII or the EBCDIC
code invented by IBM. Nowadays memory is much cheaper and the hassle
of translating different code pages can be easily avoided by encodings that

57

http://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://en.wikipedia.org/wiki/Text_encoding
http://en.wikipedia.org/wiki/US-ASCII
http://en.wikipedia.org/wiki/Line_feed
http://en.wikipedia.org/wiki/EBCDIC

	Synalyze It!
	Table of Contents
	Chapter 1. Welcome to Synalyze It!
	Thank You
	Subscribe to the Synalyze It! Newsletter

	Chapter 2. What is Synalyze It!
	Chapter 3. Installation
	Chapter 4. Synalyze It! explained
	The Reference Document
	The Grammar Editor
	Structure Properties

	The Histogram
	Compare Text Encodings
	Find Dialog
	Text Search
	Number Search
	Mask Search
	Strings

	Checksums dialog
	Data Panel Dialog

	Chapter 5. Scripting
	The Script Element
	The Script Editor
	The Custom Element
	Generic Scripts
	Grammar Scripts
	File Scripts
	Result Processing Scripts
	Selection Scripts

	Chapter 6. How Do I...
	Structure Inheritance
	Match the right Structure

	Chapter 7. Support
	Chapter 8. Reverse Engineering
	Chapter 9. Expressions
	Lengths of structure elements
	Repeat Counts
	Data Panel
	Jump to File Offset
	Expression Syntax
	Order of operators
	Internal Functions
	Internal Constants

	Chapter 10. Scripting Reference
	Class ByteArray
	Class ByteView
	Class Element
	Class Grammar
	Class GrammarManager
	Class LogSrc
	Class NumberElement
	Class NumberValue
	Class Result
	Class Results
	Class String
	Class StringElement
	Class StringValue
	Class Structure
	Class StructureElement
	Class StructureMapper
	Class Value

	Glossary

