
Synalyze It!
User's Guide

Synalyze It!: User's Guide
Andreas Pehnack
Copyright © 2009, 2010, 2011, 2012, 2013, 2014 Andreas Pehnack

Synalysis makes no warranties as to the contents of this manual or accompanying software and specifically disclaims any warranties
of merchantability or fitness for any particular purpose. Synalysis further reserves the right to make changes to the specifications of
the program and contents of the manual without obligation to notify any person or organization of such changes.

iii

Table of Contents
1. Welcome to Synalyze It! .. 1
2. What is Synalyze It! .. 2
3. Installation .. 3
4. Synalyze It! explained ... 4

The Reference Document .. 4
The Grammar Editor ... 5
The Histogram .. 14
Compare Text Encodings ... 14
Find Dialog ... 15

Checksums dialog .. 19

Data Panel Dialog .. 20

5. Scripting .. 22
6. How Do I... ... 28
7. Support ... 32
8. Reverse Engineering .. 33
9. Expressions ... 35
10. Scripting Reference .. 42
Glossary .. 65

iv

List of Figures
3.1. Installation of the application .. 3
4.1. Parts of the Reference Document ... 4
4.2. Parts of the Grammar Editor ... 6
4.3. Structure properties .. 7
4.4. Binary element properties ... 8
4.5. Custom element properties ... 9
4.6. Grammar element properties ... 10
4.7. Number element properties ... 11
4.8. Script element properties ... 12
4.9. String element properties .. 13
4.10. Parts of the Histogram dialog .. 14
4.11. Encoding comparison dialog .. 15
4.12. Text search dialog .. 16
4.13. Number search dialog ... 17
4.14. Mask search dialog .. 18
4.15. Strings dialog .. 19
4.16. Checksums dialog ... 20
4.17. Data Panel .. 21
5.1. Script editor window .. 24
6.1. Example of inherited structures (PNG chunks) ... 28
6.2. Screenshot of inherited Chunk structure ... 29
6.3. Example of automatically matched structures ... 30
6.4. Screenshot of Chunks structure .. 30
8.1. Create a grammar from the file to be analyzed ... 33
8.2. A sample record ... 33
9.1. Length expression ... 35
9.2. Repeat count expression .. 35
9.3. Data Panel .. 36
9.4. Go to position with expression .. 36
30. Litte/big endian example ... 65

1

Chapter 1. Welcome to Synalyze It!
No man can reveal to you nothing but that which already lies half-asleep in the
dawning of your knowledge.

—Khalil Gibran

Thank You
Thank you for taking the time to read this manual. Here you'll find not only how to use Synalyze
It! but also essential knowledge about the analysis of binary files.

The idea behind Synalyze It! is to support you in all the tasks that are related to analysis of binary
files. Likewise, this manual is intended to help you make the most out of the application.

In any case I'm interested in your feedback. Be it positive, if you miss something or any other
improvement.

There are many clickable references in this manual to Wikipedia or the glossary at the end of the
manual that explains the most important terms related to Synalyze It!

Features only available in Synalyze It! Pro are marked with .

Subscribe to the Synalyze It! Newsletter
Learn about the latest news, get relevant hints and tips about how to make most of the applica-
tion. Subscribe today:

• Go to the Synalysis web site http://www.synalysis.net/

• Enter your email address in the box on the left side

• Click Subscribe

http://en.wikipedia.org/wiki/Khalil_Gibran
mailto:feedback@synalysis.net
http://en.wikipedia.org/wiki/Main_Page
http://www.synalysis.net/

2

Chapter 2. What is Synalyze It!
That is strength, boy! That is power! What is steel compared to the hand that
wields it?

—Thulsa Doom

At first glance the application will look mainly like a regular hex editor, however a powerful one
that supports many text code pages, allows finding not only text but also numbers, masks or all
strings in a file or displays a histogram.

But what really sets it apart from all the other hex editors is a the support of grammars. Gram-
mars? Yes, every binary file has a layout that enables certain applications to read and interpret
them. These layouts are called grammars in Synalyze It! because of the similarities to the struc-
ture of human languages. Grammar files are stored as plain XML files and describe all the struc-
tures and data fields that comprise certain formats.

If a grammar is applied to a binary file Synalyze It! highlights all elements of the file and makes
the analysis much easier. Even non-experts become able to decode the contents of files they have
a grammar for. Many grammars already exist at http://www.synalysis.net/formats.xml and can
be downloaded for free.

With Synalyze It! you are able to

• Display and edit files of unlimited size

• Analyze unknown binary file formats

• Apply the grammar you created to any similar file

• Compare a sequence of bytes in different text encodings

• See in a histogram how often different bytes occur in a file

• Get a list all strings in a file

• Do much much more, especially with the Pro version

The scripting support in the Pro version allows to write custom Python routines that process the
parsing results, import, export or modify grammars, manipulate files or fill gaps of the generic
parser.

http://en.wikipedia.org/wiki/Thulsa_Doom

3

Chapter 3. Installation
I don't necessarily think that installation is the only way to go.

It's just a label for certain kinds of arrangements.
—Barbara Kruger

If you bought Synalyze It! via the Mac App Store, the installation is done for you automatically.
Users who downloaded the software from the web site simply drag Synalyze It! after uncom-
pressing to their application folder.

Figure 3.1. Installation of the application

If you install grammar files via the application they are stored in the path

~/Library/Containers/com.synalyze-it.SynalyzeItPro/Data/Library

/Application Support/Synalyze It! Pro/Grammars

by Synalyze It! Pro and

~/Library/Containers/net.synalysis.SynalyzeIt/Data/Library

/Application Support/SynalyzeIt/Grammars

by Synalyze It! Those grammars are suggested automatically for appropriate files you open.

Scripts are stored in

~/Library/Containers/com.synalyze-it.SynalyzeItPro/Data/Library

/Application Support/Synalyze It! Pro/Scripts

and will be embedded in grammars if you reference them.

http://en.wikipedia.org/wiki/Barbara_Kruger

4

Chapter 4. Synalyze It! explained
The cause is hidden; the effect is visible to all.

—Ovid

In Synalyze It! you mainly work with two types of windows: the actual files you're analysing
or using as a reference to build a grammar and the grammar editor that lets you make up the
structures and elements of grammars. The Pro version features additionally a scripting editor.

The Reference Document
The first thing you see when opening an arbitrary file is a hex dump and a text representation
of the bytes. The editing functions work the same like in a text editor - you can overwrite, insert
and remove bytes, select and copy bytes or text to the clipboard and so on.

The hex editor window is the starting point when exploring the details of a file. Much of the ap-
pearance can be customized like colors, position and selection number formats. There are plenty
of text encodings that can be selected to decode not only ASCII-encoded text but also Unicode
or EBCDIC as still found on IBM systems like z/OS or in formats like IJPDS.

There is a primary and a secondary selection for hex bytes and text. Per default the primary
selection is displayed in darker blue than the secondary selection. The contents of the primary
selection are displayed in the table below the hex editor and are copied to the clipboard when
you press Cmd+C (copy) or Cmd+X (cut). Switch between the selections with the Tab key and
toggle insert/overwrite mode with Cmd+K.

Figure 4.1. Parts of the Reference Document

Go to position in file
Hex with '0x' prefix
Relative with +/-

Text encoding
File name

Alt+click to
see location

Select/create
grammar

for file

Parse file again after
grammar change

Select/create script
that processes the

parsing results

Start result
processing script

explicitely

Results of parsing
with selected

grammar

Help for messagesWhich (parsing)
messages to display

Hide message
drawer if parsing

was successful

Empty log
message list

Log messages

Help for
hex editor window

Path of currently
selected result

Selection start, end,
length and content

(for clipboard)

Text representation
with selected

encoding

Position
(hex/dec/oct) or

line number

Selected bytes
switch with Tab key

Byte (hex)
representation

of file

http://en.wikipedia.org/wiki/Ovid
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/EBCDIC
http://en.wikipedia.org/wiki/Z/OS
http://www.kodakversamark.com/pdfmanuals/0113991-603.pdf

Synalyze It! explained

5

The contextual menu of the hex view allows you to search in the file, compare text in different
encodings or save the selected bytes to disk. The Pro version additionally allows to fill the selec-
tion with text or bytes.

Once you selected a grammar for the file in the toolbar, the window is split and on the right side
you see the the parsing results. The contextual window of the hex view offers now some more
options: you can add a new element or structure to the grammar and link the hex view to the
results view. This means that wherever you click in the hex view, the corresponding result will
be selected on the right-hand side.

The parsing results are not only displayed, you can edit the values and they will be translated
back to the file. For all editing in the file unlimited undo and redo are available.

The Pro version provides more means to work with the parsing results. You can save them as an
XML or text file and even process them with a custom script. Some sample scripts are available
on http://synalysis.net/scripts.html.

The Grammar Editor
When starting to create a new grammar you will mostly do the first steps in a reference file that
serves as a model. There you can select the bytes that should be interpreted as a structure, number,
string or another element. This immediate feedback — per default the grammar is applied after
each change — lets you quickly set up a basic grammar.

However, a good grammar avoids redundancy and makes use of the powerful inheritance fea-
ture. The grammar editor lets you craft elegant grammars that represent file formats as abstract
as possible.

http://synalysis.net/scripts.html

Synalyze It! explained

6

Figure 4.2. Parts of the Grammar Editor

Delete current
element Grammar info

File name
Alt+click to
see location

Contact author of
grammar

Properties of
structure/element

Which elements are
derived from the
parent structure?

Help for messagesWhich messages to
display

Hide message
drawer if parsing

was successful

Empty log
message list Log messages

Add/remove
currently selected
structure/element

Grammar structures
and elements

Add structure

Delete current
structure

You can easily rearrange structures and their elements by drag and drop, pressing the Alt key
duplicates them.

Synalyze It! explained

7

Structure Properties
Figure 4.3. Structure properties

• Extends - Select here the structure to inherit from. Only top-level structures can inherit from
other top-level structures

• Consists of - Select here a parent structure if the structure consists of multiple similar records.

• Length - The structure length in bytes. You can also select here the name of an integer number
element inside the structure or which was parsed before.

• Alignment - If a structure must start at a multiple of n bytes, use the alignment field.

• Element order - Choose a fixed element order if all elements in the structure have to appear in a
fixed order. If only a single element of many is expected, choose variable.

• Repeat - The name of an integer number element that specifies how often to repeat this struc-
ture. Make sure the max repeat count is at least the highest possible repeat count.

• min - The minimum repeat count. Parsing fails if that number is not reached.

• max - The maximum repeat count. Parsing stops if that number is reached. Select unlimited if
the structure should fill the remaining space (determined by the enclosing structure).

• Endianness - The default endianness of elements in this structure.

Synalyze It! explained

8

• Signed - The default "signedness" of elements in this structure.

• Encoding - The default encoding of strings in this structure.

• Stroke Color - The color of the path drawn around this structure in the hex view.

• Fill Color - The background color of this structure in the hex view.

• Description - Description of the structure. This is displayed in a tooltip in the results tree view.

Binary Element Properties
Binary elements are used for bit or byte sequenced that shouldn't be analyzed in more detail.

Figure 4.4. Binary element properties

• Repeat min - The minimum repeat count. Parsing fails if that number is not reached.

• Repeat max - The maximum repeat count. Parsing stops if that number is reached. Select un-
limited if the element should fill the remaining space (determined by the enclosing structure).

• Length - The element length in bits or bytes. You can also write here an expression that may
contain element names of elements parsed before.

• Fixed Values - If Must Match is set one of these values must occur in the file to be parsed. Write
the values as hex bytes.

Synalyze It! explained

9

• Must match - If this flag is set the enclosing structure is only parsed successfully if one of the
fixed values is found.

Custom Element Properties
The script used to parse or translate back to the file is chosen when the custom element is created.
The script is copied to the grammar so it doesn't depend on the scripts stored on your disk.

Figure 4.5. Custom element properties

• Repeat min - The minimum repeat count. Parsing fails if that number is not reached.

• Repeat max - The maximum repeat count. Parsing stops if that number is reached. Select un-
limited if the element should fill the remaining space (determined by the enclosing structure).

Grammar Element Properties
The grammar element parses parts of a file using an external grammar file. This makes sense for
file formats like Exif that can occur inside other file formats.

http://en.wikipedia.org/wiki/Exif

Synalyze It! explained

10

Figure 4.6. Grammar element properties

• Repeat min - The minimum repeat count. Parsing fails if that number is not reached.

• Repeat max - The maximum repeat count. Parsing stops if that number is reached. Select un-
limited if the element should fill the remaining space (determined by the enclosing structure).

• File Name - Name of the grammar file to be used. If an absolute path is specified it is always
used. If only the grammar file name is given the grammar is searched first in the directory of
the referencing grammar, next in the directory where installed grammars are stored.

Number Element Properties
Number elements are used for any kind of numbers - float or integer.

Synalyze It! explained

11

Figure 4.7. Number element properties

• Repeat min - The minimum repeat count. Parsing fails if that number is not reached.

• Repeat max - The maximum repeat count. Parsing stops if that number is reached. Select un-
limited if the element should fill the remaining space (determined by the enclosing structure).

• Type - Number type (Integer/Float).

• Length - The element length in bits or bytes (up to 64 bits). You can also write here an expression
that may contain element names of elements parsed before.

• Endianness - Byte order of number in file. Read more about this in the glossary

• Signed - Should the bytes in the file be interpreted as signed or unsigned number? Signed
numbers are read as two's complement.

• Display - Select here how to display the number in the results tree view besides the hex editor.

• Min Value - The lowest value this number can have. If Must match is set parsing of the enclosing
structure fails if this constraint is violated.

• Max Value - The highest value this number can have. If Must match is set parsing of the enclosing
structure fails if this constraint is violated.

• Fixed Values - If Must Match is set one of these values must occur in the file to be parsed. The
values are interpreted depending on the number display format.

http://en.wikipedia.org/wiki/Two%27s_complement

Synalyze It! explained

12

• Masks - If you want to show in the results view that certain bits or bit combinations do match
you cann add masks and and different values for each of them.

• Must match - If this flag is set the enclosing structure is only parsed successfully if one of the
fixed values is found and the number is within Min Value and Max Value.

Script Element Properties
The script element allows to inject little scripts that are executed while a file is parsed. A typical
usage of it is to set the endianness to be used depending on certain bytes in a file (e. g. in the
TIFF file format). Scripts can be written in Lua or Python, whatever you like more.

Figure 4.8. Script element properties

• Repeat min - The minimum repeat count. Parsing fails if that number is not reached.

• Repeat max - The maximum repeat count. Parsing stops if that number is reached. Select un-
limited if the element should fill the remaining space (determined by the enclosing structure).

String Element Properties
The string element is used for different kinds of strings.

Synalyze It! explained

13

Figure 4.9. String element properties

• Repeat min - The minimum repeat count. Parsing fails if that number is not reached.

• Repeat max - The maximum repeat count. Parsing stops if that number is reached. Select un-
limited if the element should fill the remaining space (determined by the enclosing structure).

• Type - Strings can be interpreted as Fixed length, Zero terminated, Delimiter terminated or Pascal.
Fixed-length strings are expected to consist of exactly as many bytes as specified in Length.
Zero-terminated strings are a special case of delimiter-terminated strings. They are expected
to end with a character of value zero (also strings of multi-byte characters). For pascal strings
the first character is interpreted as the actual string length. You can also specify a length that
the pascal string consumes in any case, independently of the actual string length.

• Length - Length of the string in bytes. Here an expression can be used that contains names of
elements parse previously.

• Encoding - The encoding of the string in the file.

• Delimiter - Delimiter of a delimiter-terminated string. Specify here the byte sequence that ends
a string in hex.

• Fixed Values - If Must Match is set one of these values must occur in the file to be parsed. The
values are translated automatically depending on the encoding.

Synalyze It! explained

14

The Histogram
When beginning to analyze a binary file, especially if you don't know which format it has, a
histogram can be quite useful. Histograms in Synalyze It! show you at a glance the frequency of
all bytes and provide an impression of the characteristics of a file. In many file formats you'll see
that certain bytes are more frequent than others; usually those bytes are an essential part of the
basic format structure like record separators. An equally-leveled histogram is mostly evidence
of compressed or encrypted files.

Figure 4.10. Parts of the Histogram dialog

Histogram showing
frequencies

of bytes

The file being
analyzed

Count how often
byte occurs in file

Percentage of
byte count

Character
representation

of byte

Octal
representation

of byte

Decimal
representation

of byte

Hex
representation

of byte

Percentage at
mouse position

Compare Text Encodings
In cases where you are not sure how text is encoded in a certain file the code page comparison
dialog can be an indispensable help. It displays a sequence of bytes translated to text via dozens
of encodings. Additionally a confidence value is computed that tells you the probability that
an encoding matches. The table shows both a translation of the text at the top to bytes and a
translation of the bytes at the top to text with all available encodings. For more information about
text or character encodings, see Text encodings in the glossary.

Synalyze It! explained

15

Figure 4.11. Encoding comparison dialog

Text to be
analyzed

The file being
analyzed

Hex representation
of text

Text representation
of bytes (hex)Probability in %Code page/

encoding

Hex
representation

of text

Text encoding used
for hex

representation

Find Dialog
Synalyze It! lets you search not only for text but also numbers, masks and display all strings in a
file. You can open the find dialog in the contextual menu of selected text or by pressing Cmd+E
(find selected text). Cmd+F opens the search dialog with the text from the find pasteboard which
may be filled by the search dialog in another application. The search results are updated while
you type. Double click a result in the find dialog to jump to the file position of the search result.
You may use the find dialog not only to search but also to convert text or numbers to bytes or
to get a binary representation of a few bytes.

Synalyze It! explained

16

Text Search
Unlike most other hex editors Synalyze It! lets you select one of many text encodings to have
full control over the bytes that are actually searched. You can edit either the text or the hex rep-
resentation of the searched bytes.

Figure 4.12. Text search dialog

Text to be
searched

The file being
analyzed

Help buttonFound text and
some bytes aroundNumber of results

Position where
text was found

Hex
representation

of text

Text encoding used
for hex

representation

Number Search
The number search feature makes it easy to search for an integer number in a file. Not only you
can define the number length but also if it is represented in little or big endian format.

Synalyze It! explained

17

Figure 4.13. Number search dialog

Number to be
searched

The file being
analyzed

Help buttonFound numbers and
some bytes aroundNumber of results

Position where
text was found

Hex
representation

of number

Number format
used for hex

representation

Mask Search
If you want to find a sequence of bytes with certain bits set, the mask search was developed for
you.

Synalyze It! explained

18

Figure 4.14. Mask search dialog

Mask to be
searched

The file being
analyzed

Help buttonFound bytes and
some aroundNumber of results

Position where
mask was found

Binary
representation

of mask

Strings
There's a Unix tool that offers the same functionality on the command line however in Synalyze
It! you can even select in which text encoding the strings should be found.

http://en.wikipedia.org/wiki/Strings_(Unix)

Synalyze It! explained

19

Figure 4.15. Strings dialog

Minimum
string length

The file being
analyzed

Help buttonFound strings and
some chars aroundNumber of results

Position where
mask was found

Text encoding
of strings

Find longer
strings

Checksums dialog
Binary files often contain check sums to detect or even correct unwanted modifications. Synalyze
It! Pro lets you compute them on the currently selected bytes. All supported hash algorithms are
immediately recomputed if you change the selection.

Supported checksums/hash values:

• Adler-32 - Used for example in zlib

• CRC32 - Cyclic Redundancy Check

• MD4 - MD4 Message-Digest Algorithm

• MD5 - MD5 Message-Digest Algorithm

• RIPEMD-160 - RACE Integrity Primitives Evaluation Message Digest

• SHA - Secure Hash Algorithm

• SHA-1 - Secure Hash Algorithm 1

http://en.wikipedia.org/wiki/Checksum
http://en.wikipedia.org/wiki/Adler-32
http://en.wikipedia.org/wiki/Zlib
http://en.wikipedia.org/wiki/CRC32
http://en.wikipedia.org/wiki/MD4
http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/RIPEMD-160
http://en.wikipedia.org/wiki/SHA-0#SHA-0
http://en.wikipedia.org/wiki/SHA-1

Synalyze It! explained

20

• SHA-224 - Secure Hash Algorithm 2 with 224 bits

• SHA-256 - Secure Hash Algorithm 2 with 256 bits

• SHA-384 - Secure Hash Algorithm 2 with 384 bits

• SHA-512 - Secure Hash Algorithm 2 with 512 bits

• Sum[16 Bit] - Sum of all bytes in an unsigned 16-bit integer

• Tiger - Tiger hash value with length 192 bits. Optimized for 64-bit platforms

• Whirlpool - Whirlpool cryptographic hash function

• XOR - All selected bytes XOR'ed

Figure 4.16. Checksums dialog

Data Panel Dialog
Mostly you'll work in binary files with a hexadecimal representation of the contents. However
humans are more familiar with decimal numbers. Synalyze It! Pro displays selected bytes in
common variable sizes (8, 16, 32 and 64 bit), signed and unsigned. Additionally RGB and CMYK
colors are shown for the selected bytes as well as a binary translation. The bytes can be interpreted
alternatively in little or big endian.

http://en.wikipedia.org/wiki/SHA224
http://en.wikipedia.org/wiki/SHA256
http://en.wikipedia.org/wiki/SHA384
http://en.wikipedia.org/wiki/SHA512
http://en.wikipedia.org/wiki/Tiger_(cryptography)
http://en.wikipedia.org/wiki/Whirlpool_(cryptography)
http://en.wikipedia.org/wiki/XOR
http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/Decimal
http://en.wikipedia.org/wiki/RGB
http://en.wikipedia.org/wiki/CMYK

Synalyze It! explained

21

Figure 4.17. Data Panel

22

Chapter 5. Scripting
I can't remember what my first script was.

—Tom Stoppard

Even without scripting Synalyze It! is quite a useful tool that allows to analyze files of many
file formats. However, there are rare cases that are better handled by custom scripts so the user
interface doesn't have to become more complex. Additionally, the scripting features of Synalyze
It! Pro let you automize various tasks.

You can write scripts

• in script elements, for example to control the endianness of a file

• in the script editor for custom data types or for automatization purposes

There are different types of scripts:

• Generic - can be started from the menu in any context. Use this for helper functions or the like

• Grammar - works on grammars. Useful for importing into, exporting from or modifying gram-
mars

• File - works on files. Can be used to modify opened files

• Data type - scripts to be used by custom elements

• Process Results - processes parsing results. Handy for exporting to an own format

• Selection - processes only the selected bytes in the hex editor

Scripts can be available globally or in the context of a grammar. The scripting editor shows a
separate list of global scripts and for each opened grammar.

For all scripts in Synalyze It! Pro you can choose Lua or Python depending on your language
preferences. See The Script Page for useful sample scripts. Of course, if you develop a script that
may help another user, it would be great if you share it!

The scripting reference has detailed information about all available classes and methods.

Using the function logMessage("Message") you can debug your scripts.

The Script Element
Sometimes the standard grammar structures and elements are not enough to parse a file format.
For example, in a ZIP file it is best to start at the end but Synalyze It! usually at the first byte. A
script element can continue the parsing at another file offset.

http://en.wikipedia.org/wiki/Tom_Stoppard
http://en.wikipedia.org/wiki/Lua_(programming_language)
http://en.wikipedia.org/wiki/Python_(programming_language)
http://synalysis.net/scripts.html

Scripting

23

-- Lua script that continues parsing at end of file

-- get byte view of analyzed file
byteView = currentMapper:getCurrentByteView()

-- get file length
fileLength = byteView:getLength()

-- query grammar applied to file
currentGrammar = currentMapper:getCurrentGrammar()

-- get the structure we want to apply
structure = currentGrammar:getStructureByName
 ("ZIP end of central directory record")

-- parse at file offset fileLength-22 the structure queried above
bytesProcessed = currentMapper:mapStructureAtPosition
 (structure, fileLength-22, 22)

Another common application of script elements is to select dynamically if the number elements
should be parsed in little or big endian mode.

-- Lua script that sets endianness depending on value of previous element

-- get collection with results so far
results = currentMapper:getCurrentResults()

-- get latest added result
lastResult = results:getLastResult()

-- access the parsed value
value = lastResult:getValue()

-- get the value parsed
signature = value:getString()

if (signature == "JZJZ") then
 currentMapper:setDynamicEndianness(synalysis.ENDIAN_BIG)
else
 currentMapper:setDynamicEndianness(synalysis.ENDIAN_LITTLE)
end

In order to make this work the endianness of the number elements in the grammar has to be
set to dynamic.

The Script Editor
All scripts apart from the ones in scripting elements are edited in the script editor.

Scripting

24

Figure 5.1. Script editor window

Add new script

Show script
properties

Method detailsScript source

Scripts stored
in grammar

Global scripts

Available script
classes and

methods

The Custom Element
The script that implements the logic of a custom element is edited in the script editor. In the
custom element you only select which script should be used so the code doesn't have to be copied.
(You also don't like redundancy, right?)

There are two tasks every structure element has to perform, be it a number, string or custom
element:

1. Parse data from a file and create a representation that can be displayed on screen

2. Translate an edited value back to file

The following two script functions should be implemented accordingly (Python syntax):

def parseByteRange(element, byteView, bitPos, bitLength, results):
 """parseByteRange method"""

def fillByteRange(value, byteArray, bitPos, bitLength):
 """fillByteRange method"""

Please check out http://synalysis.net/scripts.html to find illustrated samples.

http://synalysis.net/scripts.html

Scripting

25

Generic Scripts
There may be scripts you want to run comfortably via the Script menu that are not related to
grammars or other files. Generic scripts don't implement a certain script function, the whole code
is executed once you run them.

Grammar Scripts
While you can create grammars in the grammar editor and add elements via the hex editor there
are cases where scripts make your life much easier.

Grammar scripts are intended for mainly three tasks:

• Create or extend a grammar from an external source, for example an XML or .h header file

• Modify a grammar

• Export a grammar to some other representation

In Synalyze It! Pro there's already an export to .dot GraphViz files built-in however with scripts
only your programming skills are the limit ;-)

Grammar scripts can contain three method but only the processGrammar(grammar) method
is required (Python syntax).

def init():
 print "init"

def processGrammar(grammar):
 print "grammar"

def terminate():
 print "terminate"

File Scripts
Laziness is one of the main incitements that motivates people to automize work with their com-
puters. Since you're a computer expert you probably don't want to perform tedious tasks when
editing a file — be it binary or text.

File scripts allow you to create or manipulate files in any possible way. The
processByteArray(byteArray) method must be implemented, init() and termi-
nate() are optional.

def init():
 print "init"

def processByteArray(byteArray):
 print "byteArray"

def terminate():

http://www.graphviz.org

Scripting

26

 print "terminate"

On http://synalysis.net/scripts.html you see how a file script can be implemented.

Result Processing Scripts
Now if you created your grammar and can see the beautiful tree that shows all the structures
and elements of your files, what comes next?

In Synalyze It! Pro you can export the whole tree as an XML or text file but your own script could
do so much more!

An obvious application is an export to C structures as shown on http://synalysis.net/
scripts.html however I'm sure there are many other use cases.

There are three methods you can implement. init() is called first, then
processResult(result) for every single result, finally terminate() can be used to clean
up.

def init():
 print "hello init"

def processResult(result):
 print "hello result"

 type = result.getType()

 if type == RESULT_STRUCTURE_START_TYPE:
 print("Structure Start")
 else:
 print("other")

 level = result.getLevel()
 print (level)

def terminate():
 print "hello terminate"

Selection Scripts
Often it's useful to process a script only on the bytes selected in the hex editor. Selection scripts
are only available if there is a selection.

The processByteRange(byteView, byteArray, bytePos, byteLength) method is
mandatory.

def processByteRange(byteView, byteArray, bytePos, byteLength):
 print "process byte range here..."

http://synalysis.net/scripts.html
http://synalysis.net/scripts.html
http://synalysis.net/scripts.html

Scripting

27

On http://synalysis.net/scripts.html you see how a selection script can be implemented.

http://synalysis.net/scripts.html

28

Chapter 6. How Do I...
I feel very adventurous.

There are so many doors to be opened, and I'm not afraid to look behind them.
— Elizabeth Taylor

Even if you have some experience in binary file formats it may not be obvious how to translate
this to grammars in Synalyze It!

This chapter will cover common cases and questions asked by users. Feel free to contact me in
case you miss something here.

Structure Inheritance
In many file formats like PNG there are structures that comprise equal as well as differing ele-
ments (see also inheritance in the glossary). In Synalyze It! grammars you first create the parent
structure with all similar elements. This structure and its child structures must be separate from
the main structure that encloses the whole file.

Figure 6.1. Example of inherited structures (PNG chunks)

Chunk

Length (integer)

Type (string)

CRC (integer)

PLTE Chunk

Length

Type = "PLTE"

CRC

gAMA Chunk

Length

Type = "gAMA"

CRC

inherits/
extends

Data (structure)

Data Data

gAMA elements
PLTE elements

must match = YES

inherits/
extends

http://en.wikipedia.org/wiki/Elizabeth_Taylor
mailto:andreas@synalysis.net
http://en.wikipedia.org/wiki/Portable_Network_Graphics

How Do I...

29

Figure 6.2. Screenshot of inherited Chunk structure

Step by Step

1. Create the parent structure by clicking Add Structure in the toolbar. Give the structure a mean-
ingful name.

2. Create all elements that are common among all child structures. Set all properties like must
match, colors, or endianness.

3. Create the child structures by clicking Add Structure in the toolbar. Give the structures mean-
ingful names, add the elements that are special for each of them and set the correct properties.

Match the right Structure
In the section above you learned how to design structures with minimal effort. The next ques-
tion is how to select the right structure automatically. The chunk structures in figure Figure 6.1,
“Example of inherited structures (PNG chunks)” are already prepared for automatic selection
by the Synalyze It! parser. The type element of the PLTE and gAMA chunk structures contains
one so-called fixed value that must be present in the file at a certain file position. The must-match
flag is derived from the parent structure.

How Do I...

30

Figure 6.3. Example of automatically matched structures

Chunks

gAMA Chunk
Reference

PLTE Chunk

Length

Type = "PLTE"

CRC

gAMA Chunk

Length

Type = "gAMA"

CRC
Data

Data

gAMA elements

PLTE elements

[element order = variable]

PLTE Chunk
Reference

... Chunk
Reference

[min repeat count = 0]

[min repeat count = 0]

The automatic structure mapping can be compared to switch/case constructs in programming
languages. There must be a criteria that determines which structure to apply. This criteria lies in
the elements of the structures themselves, the must-match flag lets structures only be mapped if
any of the specified fixed values is found in the file.

Figure 6.4. Screenshot of Chunks structure

Step by Step

1. Create a structure that will select one of multiple structures. Set the element order to variable to
use the switch/case logic instead of sequential processing. In the screenshot this is the Chunks
structure. Set Repeat max to unlimited if multiple structures should be parsed

How Do I...

31

2. Create all the structures you want to select from by clicking Add Structure in the toolbar. Set
the must match check box for all elements which have fixed values or min/max values that
decide if a structure should match at a certain position in the file.

3. Create structure references in the structure you created first. The Repeat min field is automat-
ically set to zero for these references which indicates they are optional.

Often you'll use inherited structures for selection of one-of-many structures because mostly the
criteria that decides which structure should be applied is in the same structure element like Type
in the PNG example.

In case you want to parse files which contain structures you didn't define in the grammar you
can add a reference to the parent structure to the "select structure" because it doesn't have the
constraints of the child structures and matches always.

32

Chapter 7. Support
I'm so lucky. I have such a great support system. All I have to do is run.

—Cathy Freeman

If you still face problems after reading this manual, there are different ways to ask for help.

Fogbugz allows to enter issues directly into the Synalyze It! issue tracking system.

Emails can be sent to <support@synalysis.com> or via the web form on synalysis.net.

I'm open for any feature requests or any other suggestions, please send a note to
<ideas@synalysis.com> to help improve the application.

Thanks for using Synalyze It! We look forward to hearing from you :-)

Tip
For further information about Synalyze It! visit http://www.synalysis.net

http://en.wikipedia.org/wiki/Cathy_Freeman
https://synalysis.fogbugz.com/default.asp?pg=pgPublicEdit
mailto:support@synalysis.com
http://www.synalysis.net/contact-me.html
mailto:ideas@synalysis.com
http://www.synalysis.net

33

Chapter 8. Reverse Engineering
The hidden harmony is better than the obvious.

—Pablo Picasso

The term reverse engineering connotes usually something forbidden that only hackers do. How-
ever there are situations where reverse engineering is totally legal, fun and useful.

Let's assume there is a file you're interested in and you don't know much about its format. The
first step you can do is to look at the histogram and check if there are bytes that are more frequent
than others. Often those bytes play a special role in the file format. Zero bytes for example are
often used to end strings or to fill the unused space of elements.

Figure 8.1. Create a grammar from the file to be analyzed

To start creating an own grammar for your file format you simply click "Create grammar..." in
the grammar selection toolbar item. By this a new grammar document is created that contains
already information about file extension and/or type of the file to be analyzed.

If you are in the fortunate position that you have some control over the generation of the file,
you can try to save the file with little changes. For example, if the file is a saved score of some
game, produce files with as little difference as possible. In many cases this will lead you to the
relevant bytes and fields. Often it's easy to map the data you know from the generating program
to the bytes in the file. With this approach you try to work from the inside out. First you identify
single data elements, then the structures around them.

The alternative way is to find repeating patterns in the file that correspond with the record struc-
ture of the file. Sometimes it helps to scroll quickly though the file and let the eye detect sections
of different content in the file. The next step is to search for bytes that could hold the lengths or
file offsets of those sections.

Figure 8.2. A sample record

16 Bit
Length

16 Bit
Record Type ...

To let Synalyze It! parse the file it's necessary to learn incrementally how the file is constructed.
Sometimes you'll find some hints in newsgroups, however even without prior knowledge there
are chances to analyze formerly completely unknown file formats. You should be aware of com-
mon ways how binary file formats are built. In many cases you'll see a hierarchical structure that
consists of elements called records or chunks. Those records often contain a field that holds the

http://en.wikipedia.org/wiki/Pablo_Picasso

Reverse Engineering

34

length of the record and an identifier that tells the reading program which type of record is to
be read.

When you search for certain lengths or file offsets in the file you definitely have to understand
that the bytes can occur in reverse order. See also the explanation of endianness in the glossary.

35

Chapter 9. Expressions
There are different places where you can use expressions instead of single numbers. The expres-
sion parsing uses primarily the ExprEval library (license).

One of the few modifications to the original expression parsing library is that expressions don't
need to be ended with a semicolon in Synalyze It!. Additionally hex numbers are accepted if
they are prefixed with 0x.

Lengths of structure elements

Structure, string and binary element lengths in the grammar can be computed by an expression.
The lengths of structures allow to contain the name of number variables that are inside the struc-
ture so the expression is computed when all needed variables are read.

Figure 9.1. Length expression

Repeat Counts

The repeat counts of structures and structure elements can comprise expressions including vari-
ables parsed before the structure or element.

Figure 9.2. Repeat count expression

Data Panel

Normally you use the data panel to quickly see decimal values for the bytes in a file. However,
not only can you enter new values but even expressions that are resolved to the correct byte

representation in the file.

http://expreval.sourceforge.net/
http://expreval.svn.sourceforge.net/viewvc/expreval/tags/3_1/docs/license.txt?revision=17

Expressions

36

Figure 9.3. Data Panel

Jump to File Offset
The jump to file offset entry field in the toolbar is handy when you frequently jump to new file

offsets. You can enter there simple hex or decimal numbers as well as expressions.

Figure 9.4. Go to position with expression

Expression Syntax
Expressions have pretty much the same syntax as they would have on paper, with the following
exception:

• The asterisk '*' must be used to multiply. Examples:

• 5*6 Valid

• (x+1)*(x-1) Valid

• (x+1)(x-1) Invalid

Some functions may take reference parameters. These parameters are references to other vari-
ables. You can mix reference parameters with normal parameters. The order of the normal para-

Expressions

37

meters must remain the same and the order of the reference parameters must remain the same.
Examples:

• min(1,2,3,4,&mval); &mval is a reference to a variable mval

• min(1,2,&mval,3,4); You may mix them inside like this.

• min(1,2,(&mval),3,4); You may not nest reference parameters in any way

Expressions may also be nested with parenthesis. Examples:

• sin(x-cos(5+max(4,5,6*x)));

• 6+(5-2*(x+y));

If a variable is used in an expression, but that variable does not exist, it is considered zero. If it
does exist then its value is used instead.

Notice: An expression can NOT assign to a constant and an expression can NOT use a constant
as a reference parameter.

Order of operators
The order of operators are processed correctly in ExprEval. The parameters to functions may be
evaluated out of order, depending on the function itself.

The following illustrates the order of operators:

Operator Direction Example
Functions and Parenthesis N/A (x + 5) * sin(d)
Negation Right to Left y = -2
Exponents Left to Right y = x ^ 2
Multiplication and Division Left to Right x * 5 / y
Addition and Subtraction Left to Right 4 + 5 - 3
Assignment Right to Left x = y = z = 0

Internal Functions
The following functions are provided with ExprEval:

Function Min.
Args

Max.
Args

Min.
Ref Args

Max.
Ref Args

Result/Comment

abs(v) 1 1 0 0 Absolute value of v. abs(-4.3) re-
turns 4.3

mod(v,d) 2 2 0 0 Remainder of v/d. mod(5.2,2.5)
return 0.2

ipart(v) 1 1 0 0 The integer part of v. ipart(3.2)
returns 3

fpart(v) 1 1 0 0 The fractional part of v.
fpart(3.2) returns 0.2

min(v,...) 1 None 0 0 The minimum number passed.
min(3,2,-5,-2,7) returns -5

Expressions

38

Function Min.
Args

Max.
Args

Min.
Ref Args

Max.
Ref Args

Result/Comment

max(v,...) 1 None 0 0 The maximum number passed.
max(3,2,-5,-2,7) returns 7

pow(a,b) 2 2 0 0 The value a raised to the power
b. pow(3.2,1.7) returns 3.21.7

sqrt(a) 1 1 0 0 The square root of a. sqrt(16) re-
turns 4

sin(a) 1 1 0 0 The sine of a radians. sin(1.5) re-
turns around 0.997

sinh(a) 1 1 0 0 The hyperbolic sine of a.
sinh(1.5) returns around 2.129

asin(a) 1 1 0 0 The arc-sine of a in radians.
asin(0.5) returns around 0.524

cos(a) 1 1 0 0 The cosine of a radians. cos(1.5)
returns around 0.0707

cosh(a) 1 1 0 0 The hyperbolic cosine of a.
cosh(1.5) returns around 2.352

acos(a) 1 1 0 0 The arc-cosine of a in radians.
acos(0.5) returns around 1.047

tan(a) 1 1 0 0 The tangent of a radians.
tan(1.5) returns around 14.101

tanh(a) 1 1 0 0 The hyperbolic tangent of a.
tanh(1.5) returns around 0.905

atan(a) 1 1 0 0 The arc-tangent of a in radians.
atan(0.3) returns about 0.291

atan2(y,x) 2 2 0 0 The arc-tangent of y/x, with
quadrant correction. atan2(4,3)
returns about 0.927

log(a) 1 1 0 0 The base 10 logarithm of a.
log(100) returns 2

pow10(a) 1 1 0 0 10 raised to the power of a.
pow10(2) returns 100

ln(a) 1 1 0 0 The base e logarithm of a. ln(2.8)
returns around 1.030

exp(a) 1 1 0 0 e raised to the power of a. exp(2)
returns around 7.389

logn(a,b) 2 2 0 0 The base b logarithm of a.
logn(16,2) returns 4

ceil(a) 1 1 0 0 Rounds a up to the nearest inte-
ger. ceil(3.2) returns 4

floor(a) 1 1 0 0 Rounds a down to the nearest
integer. floor(3.2) returns 3

rand(&seed) 0 0 1 1 Returns a number between 0 up
to but not including 1.

Expressions

39

Function Min.
Args

Max.
Args

Min.
Ref Args

Max.
Ref Args

Result/Comment

random(a,b,&seed) 2 2 1 1 Returns a number between a up
to and including b.

randomize(&seed) 0 0 1 1 Seed the random number gen-
erator with a value based on the
current time. Return value is un-
known

deg(a) 1 1 0 0 Returns a radians converted
to degrees. deg(3.14) returns
around 179.909

rad(a) 1 1 0 0 Returns a degrees converted to
radians. rad(180) returns around
3.142

recttopolr(x,y) 2 2 0 0 Returns the polar radius of the
rectangular co-ordinates. rect-
topolr(2,3) returns around 3.606

recttopola(x,y) 2 2 0 0 Returns the polar angle (0...2PI)
in radians of the rectangular co-
ordinates. recttopola(2,3) returns
around 0.588

poltorectx(r,a) 2 2 0 0 Returns the x rectangular co-or-
dinate of the polar co-ordinates.
poltorectx(3,1.5) returns around
0.212

poltorecty(r,a) 2 2 0 0 Returns the y rectangular co-or-
dinate of the polar co-ordinates.
poltorecty(3,1.5) returns around
2.992

if(c,t,f) 3 3 0 0 Evaluates and returns t if c is not
0.0. Else evaluates and returns f.
if(0.1,2.1,3.9) returns 2.1

select(c,n,z[,p]) 3 4 0 0 Returns n if c is less than 0.0. Re-
turns z if c is 0.0. If c is greater
than 0.0 and only three argu-
ments were passed, returns z. If
c is greater than 0.0 and four ar-
guments were passed, return p.
select(3,1,4,5) returns 5

equal(a,b) 2 2 0 0 Returns 1.0 if a is equal to b. Else
returns 0.0 equal(3,2) returns 0.0

above(a,b) 2 2 0 0 Returns 1.0 if a is above b. Else
returns 0.0 above(3,2) returns 1.0

below(a,b) 2 2 0 0 Returns 1.0 if a is below b. Else
returns 0.0 below(3,2) returns 0.0

avg(a,...) 1 None 0 0 Returns the average of the val-
ues passed. avg(3,3,6) returns 4

Expressions

40

Function Min.
Args

Max.
Args

Min.
Ref Args

Max.
Ref Args

Result/Comment

clip(v,min,max) 3 3 0 0 Clips v to the range from min
to max. If v is less than min, it
returns min. If v is greater than
max it returns max. Otherwise it
returns v. clip(3,1,2) returns 2

clamp(v,min,max) 3 3 0 0 Clamps v to the range from
min to max, looping if needed.
clamp(8.2,1.3,4.7) returns 1.4

pntchange(side1old,
side2old, side1new,
side2new, oldpnt)

5 5 0 0 This is used to translate points
from different scale. It works no
matter the orientation as long
as the sides are lined up cor-
rectly. pntchange(-1,1,0,480,-0.5)
returns 120 (x example)
pntchange(-1,1,480,0,-0.5) re-
turns 360 (y example)

poly(x,c1,...) 2 None 0 0 This function calculates the
polynomial. x is the value to use
in the polynomial. c1 and on are
the coefficients. poly(4,6,9,3,1,4)
returns 2168 same as 6*44 + 9*43

+ 3*42 + 1*41 + 4*40

and(a,b) 2 2 0 0 Returns 0.0 if either a or b are
0.0 Else returns 1.0 and(2.1,0.0)
returns 0.0

or(a,b) 2 2 0 0 Returns 0.0 if both a and b are
0.0 Else returns 1.0 or(2.1,0.0) re-
turns 1.0

not(a) 1 1 0 0 Returns 1.0 if a is 0.0 Else re-
turns 0.0 not(0.3) returns 0.0

for(init,test,inc,a1,...) 4 None 0 0 This function acts like a for loop
in C. First init is evaluated. Then
test is evaluated. As long as the
test is not 0.0, the action state-
ments (a1 to an) are evaluat-
ed, the inc statement is evalu-
ated, and the test is evaluated
again. The result is the result
of the final action statement.
for(x=0,below(x,11),x=x+1,y=y
+x) returns 55.0 (if y was initial-
ly 0.0)

many(expr,...) 1 None 0 0 This function treats many
subexpressions as a sin-
gle object (function). It is
mainly for the 'for' function.
for(many(j=5,k=1),above(j*k,0.001),many(j=j
+5,k=k/2),0)

Expressions

41

Internal Constants
The following constants are provided with ExprEval:

Constant Math Form Value
M_E e 2.7182818284590452354
M_LOG2E log2(e) 1.4426950408889634074
M_LOG10E log10(e) 0.43429448190325182765
M_LN2 ln(2) 0.69314718055994530942
M_LN10 ln(10) 2.30258509299404568402
M_PI π 3.14159265358979323846
M_PI_2 π/2 1.57079632679489661923
M_PI_4 π/4 0.78539816339744830962
M_1_PI 1/π 0.31830988618379067154
M_2_PI 2/π 0.63661977236758134308
M_1_SQRTPI 1/√(π) 0.56418958354776
M_2_SQRTPI 2/√(π) 1.12837916709551257390
M_SQRT2 √(2) 1.41421356237309504880
M_1_SQRT2 1/√(2) 0.70710678118654752440

42

Chapter 10. Scripting Reference
This chapter contains all classes and methods you can use in the scripting functions. If you feel
there's something missing, please contact me.

Class ByteArray
A byte array object represents mostly a larger memory chunk. The actual storage is handled by
ByteStorage objects.

Methods of ByteArray:

 long getLength();

get length

 deleteRange(long position,
 long length);

Delete range in byte array.

Parameters:
position Position where to delete
length Number of bytes to delete

 fillRange(long position,
 long length,
 byte[] fillBytes);

Fill range in byte array.

Parameters:
position Position where to fill
length Number of bytes to fill
fillBytes An array of bytes to fill in range

 writeSignedInt(long position,
 long length,
 ENDIAN_TYPE endianType);

Write signed integer to byte array.

Parameters:
position Position where to write (bytes)
length Number of bytes to write

mailto:feedback@synalysis.com

Scripting Reference

43

Parameters:
endianType Endianness of number to write

 writeSignedIntBits(long position,
 long length,
 ENDIAN_TYPE endianType);

Write signed integer to byte array (on bit level)

Parameters:
position Position where to write (bits)
length Number of bits to write
endianType Endianness of number to write

 writeUnsignedInt(long position,
 long length,
 ENDIAN_TYPE endianType);

Write unsigned integer to byte array.

Parameters:
position Position where to write
length Number of bytes to write
endianType Endianness of number to write

 writeUnsignedIntBits(long position,
 long length,
 ENDIAN_TYPE endianType);

Write unsigned integer to byte array (on bit level)

Parameters:
position Position where to write (bits)
length Number of bits to write
endianType Endianness of number to write

 insertByte(long position,
 char byte);

Insert byte into byte array.

Parameters:
position Position where to insert

Scripting Reference

44

Parameters:
byte The byte to insert

 replaceByte(long position,
 char byte);

Replace byte in byte array.

Parameters:
position Position where to replace
byte The byte to replace

Class ByteView
A byte view object is a proxy to a

Methods of ByteView:

 long getLength();

Get length of byte view.

 byte readByte(long position);

Read byte from byte view (position in bytes)

Parameters:
position Position where to read the byte

 int readSignedInt(long position,
 int length,
 ENDIAN_TYPE endianType);

Read signed integer from byte view.

Parameters:
position Position where to read the number
length Length of the number in bytes
endianType Little/big endian

 uint readUnsignedInt(long position,

Scripting Reference

45

 int length,
 ENDIAN_TYPE endianType);

Read unsigned integer from byte view.

Parameters:
position Position where to read the number
length Length of the number in bytes
endianType Little/big endian

 String readString(long position,
 int length,
 String encoding);

Read string from byte view.

Parameters:
position Position where to read the string
length Length of the string in bytes
encoding Encoding of the string

Class Element
An element object represents one item in a structure.

Methods of Element:

 Element Element(ELEMENT_TYPE type,
 String name,
 bool setDefaults);

Constructor.

Parameters:
type The type of the element
name The name of the element
setDefaults Set defaults for element?

 String getName();

Get name.

 setName(String name);

Scripting Reference

46

Set name.

Parameters:
name The new name of the element

 String getDescription();

Get description.

 setDescription(String name);

Set description.

Parameters:
name The new description of the element

 Structure getEnclosingStructure();

Get enclosing structure.

 String getLength();

Get length.

 LENGTH_UNIT getLengthUnit();

Get length unit.

 setColorRgb(float red,
 float green,
 float blue);

Set fill color (RGB).

Parameters:
red Red color component between 0.0 and 1.0
green Green color component between 0.0 and 1.0
blue Blue color component between 0.0 and 1.0

Scripting Reference

47

 setLength(String length,
 LENGTH_UNIT lengthUnit);

Set length.

Parameters:
length The new length of the element
lengthUnit The new length unit (bits/bytes) of the element

 ELEMENT_TYPE getType();

Get type.

 bool mustMatch();

Get "must match" flag.

 setMustMatch(BOOL mustMatch);

Set "must match" flag.

 Value getMinValue();

Get minimum value.

 Value getMaxValue();

Get maximum value.

 Element getParent();

Get parent.

Class Grammar
A grammar with all structures and their elements

Methods of Grammar:

 String getEncoding();

Scripting Reference

48

Get encoding.

 String getDescription();

Get grammar description.

 setDescription(String description);

Set grammar description.

Parameters:
description The description of the grammar

 void addStructure(Structure structure);

Add structure.

Parameters:
structure The structure to be appended

 void insertStructureAtIndex(Structure structure,
 int index);

Insert structure at index.

Parameters:
structure The structure to be inserted
index Index where structure should be inserted

 void deleteStructureAtIndex(int index);

Delete structure at index.

Parameters:
index Index where structure should be deleted

 Structure getRootNode();

Get root node (structure)

Scripting Reference

49

 void setStartStructure(Structure startStructure);

Set start structure.

 Structure getStructureByName(String name);

Get structure by name.

Parameters:
name Name of the structure to get

 Structure getStructureByIndex(int index);

Get structure by index.

Parameters:
index Index of the structure to get

 int getStructureCount();

Get number of structures.

 setName(String name);

Set grammar name.

Parameters:
name The name of the grammar

 String getName();

get grammar name

 setUTI(String UTI);

Set UTI grammar is valid for.

Parameters:
UTI The UTI

Scripting Reference

50

 String getUTI();

Get UTI grammar is valid for.

 setFileExtension(String fileExtension);

Set file extension grammar is valid for.

Parameters:
fileExten-
sion

The file extension to be set

 String getFileExtension();

Get file extension grammar is valid for.

Class GrammarManager
The

Methods of GrammarManager:

Class LogSrc
A log source object allows to write log messages to a log target, e. g. the messages window.

Methods of LogSrc:

 logMessage(String module,
 int messageID,
 LOG_SEVERITY severity,
 String message);

Write a log message.

Parameters:
module A domain of message IDs. Can be any string that lets you iden-

tify your messages
messageID An ID to identify the message
severity Severity of the message
message The actual message

 logMessageForced(String module,
 int messageID,

Scripting Reference

51

 LOG_SEVERITY severity,
 String message);

Write a log message. It will be displayed no matter which severity is specified.

Parameters:
module A domain of message IDs. Can be any string that lets you iden-

tify your messages
messageID An ID to identify the message
severity Severity of the message
message The actual message

 logMessageHighlight(String module,
 int messageID,
 LOG_SEVERITY severity,
 String message);

Write a log message. The first message written with this method will be selected.

Parameters:
module A domain of message IDs. Can be any string that lets you iden-

tify your messages
messageID An ID to identify the message
severity Severity of the message
message The actual message

Class Mask
A

Methods of Mask:

 String getName();

Get name.

 String getDescription();

Get description.

 unsigned int getValue();

Get value.

Scripting Reference

52

Class NumberElement
A number element object represents one number item in a structure.

Methods of NumberElement:

 NUMBER_DISPLAY_TYPE getNumberDisplayType();

Get number display.

 NUMBER_TYPE getNumberType();

Get number type.

 ENDIAN_TYPE getEndianness();

Get endianness.

 bool isSigned();

Is number element of type signed?

Class NumberValue

Methods of NumberValue:

 ulong getUnsigned();

Get unsigned number.

 void setUnsigned(ulong number);

Set unsigned number.

Parameters:
number The unsigned number to be set

 long getSigned();

Scripting Reference

53

Get signed number.

 void setSigned(long number);

Set signed number.

Parameters:
number The signed number to be set

 ulong getFloat();

Get floating-point number.

 void setFloat(double number);

Set floating-point number.

Parameters:
number The number to be set

Class Result
objects are created during the structure mapping process. Depending on their type they refer to
a structure or struct element and a value.

Methods of Result:

 Value getValue();

Get value.

 Mask getMask();

Get mask.

 ByteView getByteView();

byte view.

 int getLevel();

Scripting Reference

54

Get level.

 int getIteration();

Get iteration.

 int getStartBytePos();

Get start (byte).

 int getStartBitPos();

Get start (bit).

 int getByteLength();

Get length (bytes).

 int getBitLength();

Get length (bits).

 String getName();

Get name.

 Structure getStructure();

Get structure.

 Element getElement();

Get structure element.

Class Results
A results object contains the results of the structure mapping process

Scripting Reference

55

Methods of Results:

 Result addStructureStart(Structure structure,
 long startPos,
 int iteration,
 String name,
 bool addSizeToEnclosing);

Add start of a structure to the results.

Parameters:
structure The structure that was mapped
startPos Where in the file was the structure mapped?
iteration How often was this structure mapped consecutively? (Array of

structures)
name Name to show for the result
addSize-
ToEnclosing

Add size to the enclosing structure result? Set this to true if the
structure is actually contained in the enclosing structure in the
result tree.

 Result addStructureStartAtPosition(Structure structure,
 long startPos,
 int iteration,
 String name);

Add start of a structure to the results.

Parameters:
structure The structure that was mapped
startPos Where in the file was the structure mapped?
iteration How often was this structure mapped consecutively? (Array of

structures)
name Name to show for the result

 Result addStructureEnd(long endPos);

Add end of a structure to the results.

Parameters:
endPos Where in the file did the structure end? Padding bytes are cal-

culated automatically

 Result addElement(Element element,
 long length,
 int iteration,

Scripting Reference

56

 Value value);

Add a structure element to the results. Length is specified in bytes.

Parameters:
element The structure element that was mapped
length Length of the element in bytes
iteration How often was this structure element mapped consecutively?

(Array of structures)
value The value resulting of the element being mapped to the file

 Result addElementBits(Element element,
 long length,
 int iteration,
 Value value);

Add a structure element to the results. Length is specified in bits.

Parameters:
element The structure element that was mapped
length Length of the element in bits
iteration How often was this structure element mapped consecutively?

(Array of structures)
value The value resulting of the element being mapped to the file

 cut(Result result);

Cut results.

Parameters:
result First result

 Result getLastResult();

Get last result.

 Result getPrevResult(Result result);

Get previous result.

Parameters:
result The result you want the predecessor for

Scripting Reference

57

 Result getResultByName(String name);

Get result by name.

Parameters:
name Name of the result you're looking for

Class String
The

Methods of String:

Class StringElement
A string element object represents one binary item in a structure.

Methods of StringElement:

 String getEncoding();

Get encoding.

 setEncoding(String encoding);

Set encoding.

Parameters:
encoding The new string encoding of the element

 int getBytesPerChar();

Get bytes per character.

 STRING_LENGTH_TYPE getLengthType();

Get string length type.

Class StringValue

Scripting Reference

58

Methods of StringValue:

 String getString();

Get string.

 setString(String string);

Set string.

Parameters:
string The string to be set

Class Structure
A structure object represents a structure in a grammar.

Methods of Structure:

 Grammar getGrammar();

Get grammar.

 setAlignment(int alignment);

Set alignment.

Parameters:
alignment The alignment value

 int getAlignment();

Get alignment.

 String getDescription();

Get structure description.

 setDescription(String description);

Set structure description.

Scripting Reference

59

Parameters:
description The description of the structure

Parameters:
description The default encoding

 String getName();

Get name.

 setName(String name);

Set name.

Parameters:
name The new name of the structure

 setDisabled(BOOL disabled);

Disable/Enable structure for parsing.

Parameters:
disabled Disable/enable the structure

 setLength(String length,
 LENGTH_UNIT lengthUnit);

Set length of structure.

Parameters:
length The new length of the structure
lengthUnit The new length unit of the structure

 setRepeatMin(String repeatMin);

Set minimum repeat count of structure.

Parameters:
repeatMin The new min repeat count of the structure

Scripting Reference

60

 setRepeatMax(String repeatMax);

Set maximum repeat count of structure.

Parameters:
repeatMax The new max repeat count of the structure

 int getElementCount();

Get element count.

 Element getElementByIndex(int index);

Get element by index.

 Element getElementByName(String name);

Get element by name.

 setDefaultEncoding(String defaultEncoding);

Set default encoding.

Parameters:
default-
Encoding

The default encoding

 String getDefaultEncoding();

Get default encoding.

 setElementOrder(ORDER_TYPE order);

Set element order.

Parameters:
order The element order in the structure

 int appendElement(Element * element);

Scripting Reference

61

Append element.

Parameters:
element The element to be appended

 void insertElementAtIndex(Element * element,
 int index);

Insert element at certain index.

Parameters:
element The element to be inserted
index The index where to insert

 void deleteElementAtIndex(int index);

Delete element at index.

Parameters:
index The index where to delete

Class StructureElement
A structure element object represents one structure item inside another structure.

Methods of StructureElement:

 Structure getStructure();

Get structure.

Class StructureMapper
A structure mapper object maps the structures of a grammar to a file (

Methods of StructureMapper:

 long mapStructure(Structure structure);

Map a structure at the current position to a file.

Parameters:
structure The structure to apply

Scripting Reference

62

 long mapStructureAtPosition(Structure structure,
 long position,
 long size);

Map a structure at the given position to a file.

Parameters:
structure The structure to apply
position Where to apply the structure
size Maximum space the structure can consume

 long mapElementWithSize(Element element,
 int maxSize);

Map an element at the current position to a file.

Parameters:
element The element to be applied
maxSize The maximum size the element may have

 setDynamicEndianness(ENDIAN_TYPE endianness);

Set dynamic endianness.

Parameters:
endianness The endianness to use from now on

 ENDIAN_TYPE getDynamicEndianness();

Get endianness set currently.

 ByteArray getCurrentByteArray();

Current byte array being processed.

 ByteView getCurrentByteView();

Current byte view being processed.

Scripting Reference

63

 Structure getCurrentGrammar();

Current grammar being processed.

 LogSrc getCurrentLogSrc();

Current log source used for output.

 Results getCurrentResults();

Current results used while mapping structures.

 Structure getCurrentStructure();

Current structure being mapped.

 Element getCurrentElement();

Current structure element being mapped. This is of course the scripting element...

 long getCurrentOffset();

Current file offset of the mapping operation.

 setCurrentOffset(unsigned long offset);

Set current file offset of the mapping operation.

Parameters:
offset New offset to continue processing after script

 long getCurrentRemainingSize();

Current remaining size of the mapping operation.

Class Value
A

Scripting Reference

64

Methods of Value:

 String getName();

Get name.

 setName(String name);

Set name.

Parameters:
name The alignment value

 VALUE_TYPE getType();

Get value type.

65

Glossary
Here you find some terms explained in the context of this manual.

E
Endianness When you develop in high-level languages like Java or C you often don't

notice that the variables you work with are stored in a different byte order
in memory, depending on the machine you work on. Only if you display a
memory dump of structures or variables you see that the bytes may appear
in a different order than what you expected. This reverse byte ordering is
called little endian. Big endian means that the bytes of a variable in memory
are ordered as if you write the value on paper. There are CPUs that can
work both in little and big endian mode but usually you'll find little endian
on PC architectures while big endian is found on platforms like AIX or
Solaris (SPARC).

As mentioned the endianness is normally hidden from the casual program-
mer however if you dump structures or variables directly to a file or trans-
mit them via a TCP connection, it does play a role. Many file format spec-
ifications explicitly define the endianness of the data fields. There are file
formats that allow as well big as little endian interpretation for the num-
ber elements. Synalyze It! supports such formats with a feature called dy-
namic endianness — a script can define for a certain file if the elements
marked with dynamic endianness should be interpreted as little or big en-
dian numbers.

Figure 30. Litte/big endian example

32-bit value: 305419896 (decimal) or 12345678 (hex)

Big Endian:

Little Endian

12 34 56 78

78 56 34 12

G
Grammar Grammar in the context of Synalyze It! means a definition of the structure

of a certain file format. Just as spoken languages also binary files must
follow a set of rules to be able to be understood - be it by humans or by
computers. The definition of a grammar for binary files allows to parse
them by the generic parser in Synalyze It!. Those grammars are stored on
disk in XML format.

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Little_endian#Little-endian
http://en.wikipedia.org/wiki/Big_endian
http://en.wikipedia.org/wiki/Formal_grammar
http://en.wikipedia.org/wiki/XML

Glossary

66

I
Inheritance The term inheritance is used in Synalyze It! as in object-oriented program-

ming languages. In record-oriented binary file formats you often find sim-
ilar records that start with the same elements like record length or an iden-
tifier that identifies the record. Defining a parent structure once that holds
the elements which are shared by all child structures saves time, avoids
mistakes and makes the grammar easier to understand.

P
Pascal strings There are different concepts in the various programming languages how

text strings are stored in memory. In C-based programming languages the
length of a string is only determined by a byte with value zero after the last
character while in Pascal the first byte contains the length of the following
characters. Accordingly you find in binary files both types of text string
representations plus such of fixed-length.

T
Text encodings A good part of the information computers process is text. Since computers

only know how to handle and store numbers, characters have to be repre-
sented by numbers. In the early days of computers storage was expensive
so characters were assigned to as least bits as possible. ASCII is still the
code page most people know however the 7 bits are only enough to repre-
sent 128 characters, including control characters like line feed or carriage
return. To represent text in non-English languages, more code points were
needed so many 8-bit code pages exist that base on ASCII or the EBCDIC
code invented by IBM. Nowadays memory is much cheaper and the hassle
of translating different code pages can be easily avoided by encodings that

http://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://en.wikipedia.org/wiki/Text_encoding
http://en.wikipedia.org/wiki/US-ASCII
http://en.wikipedia.org/wiki/Line_feed
http://en.wikipedia.org/wiki/EBCDIC

	Synalyze It!
	Table of Contents
	Chapter 1. Welcome to Synalyze It!
	Thank You
	Subscribe to the Synalyze It! Newsletter

	Chapter 2. What is Synalyze It!
	Chapter 3. Installation
	Chapter 4. Synalyze It! explained
	The Reference Document
	The Grammar Editor
	Structure Properties
	Binary Element Properties
	Custom Element Properties
	Grammar Element Properties
	Number Element Properties
	Script Element Properties
	String Element Properties

	The Histogram
	Compare Text Encodings
	Find Dialog
	Text Search
	Number Search
	Mask Search
	Strings

	Checksums dialog
	Data Panel Dialog

	Chapter 5. Scripting
	The Script Element
	The Script Editor
	The Custom Element
	Generic Scripts
	Grammar Scripts
	File Scripts
	Result Processing Scripts
	Selection Scripts

	Chapter 6. How Do I...
	Structure Inheritance
	Step by Step

	Match the right Structure
	Step by Step

	Chapter 7. Support
	Chapter 8. Reverse Engineering
	Chapter 9. Expressions
	Lengths of structure elements
	Repeat Counts
	Data Panel
	Jump to File Offset
	Expression Syntax
	Order of operators
	Internal Functions
	Internal Constants

	Chapter 10. Scripting Reference
	Class ByteArray
	Class ByteView
	Class Element
	Class Grammar
	Class GrammarManager
	Class LogSrc
	Class Mask
	Class NumberElement
	Class NumberValue
	Class Result
	Class Results
	Class String
	Class StringElement
	Class StringValue
	Class Structure
	Class StructureElement
	Class StructureMapper
	Class Value

	Glossary

